Adrian M, Heddi B, Phan A T. NMR spectroscopy of G-quadruplexes[J]. Methods. 2012, 57(1): 11-24.
[2]
Zhu G, Bax A. Improved linear prediction for truncated signals of known phase[J]. J Magn Reson, 1990, 90(2): 405-410.
[3]
Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.
[4]
Vorlickova M, Kejnovska I, Sagi J, et al. Circular dichroism and guanine quadruplexes[J]. Methods, 2012, 57(1): 64-75.
[5]
Randazzo A, Spada G P, Da S M. Circular dichroism of quadruplex structures[J]. Top Curr Chem, 2013, 330: 67-86.
[6]
Karsisiotis A I, Hessari N M, Novellino E, et al. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism[J]. Angew Chem Int Ed Engl, 2011, 50(45): 10 645-10 648.
[7]
Paramasivan S, Rujan I, Bolton P H. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding[J]. Methods, 2007, 43(4): 324-331.
[8]
Feigon J, Koshlap K M, Smith F W. 1H NMR spectroscopy of DNA triplexes and quadruplexes[J]. Methods Enzymol, 1995, 261: 225-255.
[9]
Patel D J, Tonelli A E. Assignment of the proton Nmr chemical shifts of the T-N3H and G-N1H proton resonances in isolated AT and GC Watson-Crick base pairs in double-stranded deoxy oligonucleotides in aqueous solution[J]. Biopolymers, 1974, 13(10): 1 943-1 964.
[10]
Wuthrich K. NMR of Proteins and Nucleic Acid[M]. New York: John Wiley & Sons, 1986.
[11]
Wijmenga S S, Mooren M W, Hilbers C W. NMR of Nucleic Acids: from Spectrum to Structure[M]. Oxford: Oxford University Press, 1993.
[12]
Wijmenga S S, van Buuren B N M. The use of NMR methods for conformational studies of nucleic acids[J]. Prog Nucl Magn Reson Spectrosc, 1998, 32(4): 287-387.
[13]
Wang Y, Patel D J. Solution structure of the Oxytricha telomeric repeat d[G4(T4G4) G-tetraplex[J]. J Mol Biol, 1995, 251(1): 76-94.
[14]
Phan A T. Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA[J]. J Biomol NMR, 2000, 16(2): 175-178.
[15]
Phan A T, Patel D J. A site-specific low-enrichment 15N, 13C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids[J]. J Am Chem Soc, 2002, 124(7): 1 160-1 161.
[16]
Martadinata H, Phan A T. Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution[J]. J Am Chem Soc, 2009, 131(7): 2 570-2 578.
[17]
Phan A T, Kuryavyi V, Darnell J C, et al. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction[J]. Nat Struct Mol Biol, 2011, 18(7): 796-804.
[18]
Phan A T, Gueron M, Leroy J L. Investigation of unusual DNA motifs[J]. Methods Enzymol, 2001, 338: 341-371.
[19]
Dias E, Battiste J L, Williamson J R. Chemical probe for glycosidic conformation in telomeric DNAs[J]. J Am Chem Soc, 1994, 116(10): 4 479-4 480.
[20]
Clowney L, Jain S C, Srinivasan A R, et al. Geometric parameters in nucleic acids: nitrogenous bases[J]. J Am Chem Soc, 1996, 118(3): 509-518.
[21]
Gelbin A, Schneider B, Clowney L, et al. Geometric parameters in nucleic acids: sugar and phosphate constituents[J]. J Am Chem Soc, 1996, 118(3): 519-529.
[22]
Foloppe N, MacKerell A D Jr. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data[J]. J Comput Chem, 2000, 21(2): 86-104.
[23]
Schoeftner S, Blasco M A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II[J]. Nat Cell Biol, 2008, 10(2): 228-236.
[24]
Azzalin C M, Reichenbach P, Khoriauli L, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends[J]. Science, 2007, 318(5 851): 798-801.
[25]
Horard B, Gilson E. Telomeric RNA enters the game[J]. Nat Cell Biol, 2008, 10(2): 113-115.
[26]
Joachimi A, Benz A, Hartig J S. A comparison of DNA and RNA quadruplex structures and stabilities[J]. Bioorg Med Chem, 2009, 17(19): 6 811-6 815.
[27]
Collie G W, Haider S M, Neidle S, et al. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex[J]. Nucleic Acids Res, 2010, 38(16): 5 569-5 580.
[28]
Xu Y, Ishizuka T, Kimura T, et al. A U-tetrad stabilizes human telomeric RNA G-quadruplex structure[J]. J Am Chem Soc,2010, 132(21): 7 231-7 233.
[29]
Arora A, Maiti S. Differential biophysical behavior of human telomeric RNA and DNA quadruplex[J]. J Phys Chem B, 2009, 113(30): 10 515-10 520.
[30]
Collie G W, Parkinson G N, Neidle S, et al. Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures[J]. J Am Chem Soc, 2010, 132(27): 9 328-9 334.
[31]
Xu Y, Kaminaga K, Komiyama M. G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution[J]. J Am Chem Soc, 2008, 130(33): 11 179-11 184.
[32]
Phan A T. Human telomeric G-quadruplex: structures of DNA and RNA sequences[J]. FEBS J, 2010, 277(5): 1 107-1 117.
[33]
Zhang D H, Fujimoto T, Saxena S, et al. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors[J]. Biochemistry, 2010, 49(21): 4 554-4 563.
[34]
Collie G W, Sparapani S, Parkinson G N, et al. Structural basis of telomeric RNA quadruplex--acridine ligand recognition[J]. J Am Chem Soc, 2011, 133(8): 2 721-2 728.
[35]
Martadinata H, Heddi B, Lim K W, et al. Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks[J]. Biochemistry, 2011, 50(29): 6 455-6 461.
[36]
Randall A, Griffith J D. Structure of long telomeric RNA transcripts: the G-rich RNA forms a compact repeating structure containing G-quartets[J]. J Biol Chem, 2009, 284(21): 13 980-13 986.
[37]
Martadinata H, Phan A T. Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution[J]. J Am Chem Soc, 2009, 131(7): 2 570-2 578.
[38]
Xu Y, Suzuki Y, Ito K, et al. Telomeric repeat-containing RNA structure in living cells[J]. Proc Natl Acad Sci USA, 2010, 107(33): 14 579-14 584.
[39]
Biffi G, Tannahill D, Balasubramanian S. An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2[J]. J Am Chem Soc, 2012, 134(29): 11 974-11 976.
[40]
Safa L, Delagoutte E, Petruseva I, et al. Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability[J]. Biochimie, 2014, 103: 80-88.
[41]
Ray S, Bandaria J N, Qureshi M H, et al. G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding[J]. Proc Natl Acad Sci USA, 2014, 111(8): 2 990-2 995.
[42]
Zaug A J, Podell E R, Cech T R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro[J]. Proc Natl Acad Sci USA, 2005, 102(31): 10 864-10 869.
[43]
Kelleher C, Kurth I, Lingner J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro[J]. Mol Cell Biol, 2005, 25(2): 808-818.
[44]
Ye J Z, Hockemeyer D, Krutchinsky A N, et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex[J]. Genes Dev, 2004, 18(14): 1 649-1 654.
[45]
Hwang H, Buncher N, Opresko P L, et al. POT1-TPP1 regulates telomeric overhang structural dynamics[J]. Structure, 2012, 20(11): 1 872-1 880.
[46]
Denchi E L, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1[J]. Nature, 2007, 448(7 157): 1 068-1 071.
[47]
Wang F, Podell E R, Zaug A J, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor[J]. Nature, 2007, 445(7 127): 506-510.
[48]
Xiong J, Fan S, Meng Q, et al. BRCA1 inhibition of telomerase activity in cultured cells[J]. Mol Cell Biol, 2003, 23(23): 8 668-8 690.
[49]
Ballal R D, Saha T, Fan S, et al. BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage[J]. J Biol Chem, 2009, 284(52): 36 083-36 098.
[50]
Scognamiglio P L, Di Natale C, Leone M, et al. G-quadruplex DNA recognition by nucleophosmin: new insights from protein dissection[J]. Biochim Biophys Acta, 2014, 1 840(6): 2 050-2 059.
[51]
Gonzalez V, Guo K, Hurley L, et al. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein[J]. J Biol Chem, 2009, 284(35): 23 622-23 635.
[52]
Cogoi S, Zorzet S, Rapozzi V, et al. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice[J]. Nucleic Acids Res, 2013, 41(7): 4 049-4 064.
[53]
Paramasivam M, Membrino A, Cogoi S, et al. Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription[J]. Nucleic Acids Res, 2009, 37(9): 2 841-2 853.
[54]
Cogoi S, Paramasivam M, Membrino A, et al. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element[J]. J Biol Chem,
[55]
2010, 285(29): 22 003-22 016.
[56]
De Cian A, Gros J, Guedin A, et al. DNA and RNA quadruplex ligands[J]. Nucleic Acids Symp Ser (Oxf), 2008, (52): 7-8.
[57]
Phan A T, Kuryavyi V, Gaw H Y, et al. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter[J]. Nat Chem Biol, 2005, 1(3): 167-173.
[58]
Dai J, Carver M, Hurley L H, et al. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design[J]. J Am Chem Soc, 2011, 133(44): 17 673-17 680.
[59]
Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy[J]. Angew Chem Int Ed Engl, 1999, 28(12): 1 784-1 788.
[60]
Di Micco S, Bassarello C, Bifulco G, et al. Differential-frequency saturation transfer difference NMR spectroscopy allows the detection of different ligand-DNA binding modes[J]. Angew Chem Int Ed Engl, 2005, 45(2): 224-228.
[61]
Martino L, Virno A, Pagano B, et al. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4[J]. J Am Chem Soc, 2007, 129(51): 16 048-16 056.
[62]
Zimmerman S B, Trach S O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli[J]. J Mol Biol, 1991, 222(3): 599-620.
[63]
Hansel R, Foldynova-Trantirkova S, Lohr F, et al. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy[J]. J Am Chem Soc, 2009, 131(43): 15 761-15 768.
[64]
Hansel R, Lohr F, Foldynova-Trantirkova S, et al. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions[J]. Nucleic Acids Res, 2011, 39(13): 5 768
[65]
-5 775.
[66]
Hansel R, Lohr F, Trantirek L, et al. High-resolution insight into G-overhang architecture[J]. J Am Chem Soc, 2013, 135(7): 2 816-2 824.
[67]
Salgado G F, Cazenave C, Kerkour A, et al. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy[J]. Chem Sci, 2015. DOI: 10.1039/C4SC03853C