全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多尺度计算方法的活体磁共振谱自动相位矫正和代谢物定量分析

, PP. 32-39

Keywords: 活体多片磁共振谱成像(MRSI),多尺度分析方法,线型拟合,自动相位矫正

Full-Text   Cite this paper   Add to My Lib

Abstract:

活体多片磁共振谱成像(MRSI)产生大量的波谱数据,因此需要使用自动的谱数据分析方法来获得不同组织代谢产物的定量分布图.然而,活体波谱通常产生严重的谱和基线变形,使得基于曲线拟合的谱定量数据分析方法失效.该文应用多尺度分析(Multiscale)方法自动确定兴趣代谢物在频率空间的谱峰特征(位置和线宽),然后通过叠代运算对该代谢物对应的谱峰进行独立的自动相位矫正和线型拟合.大脑波谱成像的实验结果表明,该方法可以方便、有效的获得代谢产物在大脑的分布,特别适宜于多片磁共振谱成像的代谢产物定量分析.

References

[1]  Podo F, Henriksen O, Bovee W M, et al. Absolute metabolite quantification by in vivo NMR spectroscopy: I.Introduction, objectives and activities of a concerted action in biomedical research[J]. Magn Reson Imaging, 1998, 16(9): 1 085-1 092.
[2]  Nelson S J, Vigneron D B, Star-Lack J, et al. High spatial resolution and speed in MRSI[J]. NMR Biomed, 1997, 10(8): 411-422.
[3]  Kurhanewicz J, Swanson M G, Wood P J, et al. Magnetic resonance imaging and spectroscopic imaging: Improved patient selection and potential for metabolic intermediate endpoints in prostate cancer chemoprevention trials[J]. Urology, 2001, 57(4 Suppl 1): 124-128.
[4]  He Q, Xu R Z, Shkarin P, et al. Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment[J]. Dis Markers, 2003, 19(2–3): 69-94.
[5]  Golder W. Magnetic resonance spectroscopy in clinical oncology[J]. Onkologie, 2004, 27(3): 304-309.
[6]  Glunde K, Jiang L, Moestue S A, et al. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer[J]. NMR Biomed, 2011, 24(6): 673-690.
[7]  Barker P B, Lin D D M. In vivo proton MR spectroscopy of the human brain[J]. Prog Nucl Mag Res Sp, 2006, 49(2): 99-128.
[8]  Stagg C J, Knight S, Talbot K, et al. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS[J]. Neurology, 2013, 80(7): 610-615.
[9]  Pan J W, Twieg D B, Hetherington H P. Quantitative spectroscopic imaging of the human brain[J]. Magn Reson Med, 1998, 40(3): 363-369.
[10]  Maudsley A A, Darkazanli A, Alger J R, et al. Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging[J]. NMR Biomed, 2006, 19(4): 492-503.
[11]  Spielman D M, Adalsteinsson E, Lim K O. Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain[J]. Magn Reson Med, 1998, 40(3): 376-382.
[12]  Maudsley A A. Spectral lineshape determination by self-deconvolution[J]. J Magn Reson Ser B, 1995, 106(1): 47-57.
[13]  Alm E, Slagbrand T, Aberg K M, et al. Automated annotation and quantification of metabolites in 1H NMR data of biological origin[J]. Anal Bioanal Chem, 2012, 403(2): 443-455.
[14]  Song X, Zhang B L, Liu H M, et al. IQMNMR: Open source software using time-domain NMR data for automated identification and quantification of metabolites in batches[J]. BMC Bioinformatics, 2011, 12: 337.
[15]  Kaartinen J, Mierisova S, Oja J M, et al. Automated quantification of human brain metabolites by artificial neural network analysis from in vivo single-voxel 1H NMR spectra[J]. J Magn Reson, 1998, 134(1): 176-179.
[16]  Hao J, Astle W, De Iorio M, et al. BATMAN-an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model[J]. Bioinformatics, 2012, 28(15): 2 088-2 090.
[17]  Osorio-Garcia M I, Sima D M, Nielsen F U, et al. Quantification of in vivo 1H magnetic resonance spectroscopy signals with baseline and lineshape estimation[J]. Meas Sci Technol, 2011, 22(11): 114 011-114 020.
[18]  Provencher S W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra[J]. Magn Reson Med, 1993, 30(6): 672-679.
[19]  De Graaf A A, Bovee W M. Improved quantification of in vivo 1H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into the spectral fitting[J]. Magn Reson Med, 1990, 15(2): 305-319.
[20]  Young K, Govindaraju V, Soher B J, et al. Automated spectral analysis I: Formation of a priori information by spectral simulation[J]. Magn Reson Med, 1998, 40(6): 812-815.
[21]  Zhang X, Heberlein K, Sarkar S, et al. A multiscale approach for analyzing in vivo spectroscopic imaging data[J]. Magnet Reson Med, 2000, 43(3): 331-334.
[22]  Metzger G, Sarkar S, Zhang X, et al. A hybrid technique for spectroscopic imaging with reduced truncation artifact[J]. Magn Reson Imaging, 1999, 17(3): 435-443.
[23]  Labadie C, Hetzer S, Schulz J, et al. Center-out echo-planar spectroscopic imaging with correction of gradient-echo phase and time shifts[J]. Magn Reson Med, 2013, 70(1): 16-24.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413