全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜丝光沸石上甲醇羰基化反应的固体核磁共振研究

, PP. 331-340

Keywords: 固体核磁共振(solid-stateNMR),丝光沸石,羰基化反应,多相催化,反应机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用固体核磁共振方法,研究了铜修饰丝光沸石(Cu-H-MOR)分子筛催化甲醇(CH3OH)与一氧化碳(CO)羰基化反应过程.通过研究反应过程中生成的各吸附物种与Cu2+的相互作用,分别对这些吸附物种进行了归属,确定了铜甲氧基(Cu-OCH3)和铜乙酰基(Cu-(CO)-CH3)为羰基化反应过程的中间产物,讨论了可能的反应机理.

References

[1]  Lazo N D, Murray D K, Kieke M L, et al. In situ carbon-13 solid-state NMR study of the Cu/ZnO/Al2O3 methanol synthesis catalyst[J]. J Am Chem Soc, 1992, 114(22): 8 552-8 559.
[2]  Ellis B, Howard M J, Joyner R W, et al. Heterogeneous Catalysts for the Direct, Halide-Free Carbonylation of Methanol//Hightower J W, Delgass W N, Iglesia E, et al. 11th International Congress on Catalysis – 40th Anniversary, Pts A and B[C]. Amsterdam: Elsevier Science Bv, 1996, 101: 771-779.
[3]  Xu Q, Inoue S, Tsumori N, et al. Carbonylation of tert-butyl alcohol over H-zeolites[J]. J Mol Catal A-Chemical, 2001, 170(1-2): 147-153.
[4]  Gounder R, Iglesia E. Catalytic Consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J]. J Am Chem Soc, 2009, 131(18): 6 554-6 565.
[5]  Uzun A, Bhirud V A, Kletnieks P W, et al. A site-isolated iridium diethylene complex supported on highly dealuminated Y zeolite: synthesis and characterization[J]. J Phys Chem C, 2007, 111(41): 15 064-15 073.
[6]  Haw J F, Song W, Marcus D M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003, 36(5): 317-326.
[7]  Krawietz T R, Lin P, Lotterhos K E, et al. Solid phosphoric acid catalyst: A multinuclear NMR and theoretical study[J]. J Am Chem Soc, 1998, 120(33): 8 502-8 511.
[8]  Blasco T, Boronat M, Concepción P, et al. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem Int Edit, 2007, 46(21): 3 938-3 941.
[9]  Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc, 2007, 129(16): 4 919-4 924.
[10]  Bhan A, Iglesia E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Acc Chem Res, 2008, 41(4): 559-567.
[11]  Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Edit, 2006, 45(10): 1 617-1 620.
[12]  Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Cat, 2007, 245(1): 110-123.
[13]  Gounder R, Iglesia E. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J]. J Am Chem Soc, 2009, 131(5): 1 958-1 971.
[14]  Gounder R, Iglesia E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis[J]. Acc Chem Res, 2012, 45(2): 229-338.
[15]  Freude D, Hunger M, Pfeifer H, et al. H-1 MAS NMR-studies on the acidity of zeolites[J]. Chem Phys Lett, 1986, 128(1): 62-66.
[16]  Veefkind V A, Smidt M L, Lercher J A. On the role of strength and location of Bronsted acid sites for ethylamine synthesis on mordenite catalysts[J]. Appl Cat A-General, 2000, 194: 319-332.
[17]  Iwahara J, Schwieters C D, Clore G M. Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc, 2004, 126(18): 5 879-5 896.
[18]  Kervern G, Pintacuda G, Zhang Y, et al. Solid-state NMR of a paramagnetic DIAD-FeII catalyst: Sensitivity, resolution enhancement, and structure-based assignments[J]. J Am Chem Soc, 2006, 128(41): 13 545-13 552.
[19]  Balayssac S, Bertini I, Lelli M, et al. Paramagnetic ions provide structural restraints in solid-state NMR of proteins[J]. J Am Chem Soc, 2007, 129(8): 2 218-2 219.
[20]  Bertini I, Gupta Y K, Luchinat C, et al. Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains[J]. J Am Chem Soc, 2007, 129(42): 12 786-12 794.
[21]  Su Y, Mani R, Hong M. Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: A cell-penetrating peptide example[J]. J Am Chem Soc, 2008, 130(27): 8 856-8 864.
[22]  Jiang Y, Hunger M, Wang W. On the reactivity of surface methoxy species in acidic zeolites[J]. J Am Chem Soc, 2006, 128(35): 11 679-11 692.
[23]  Boronat M, Martinez-Sanchez C, Law D, et al. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc, 2008, 130, (48): 16 316-16 323.
[24]  Li B, Xu J, Han B, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C, 2013, 117(11): 5 840-5 847.
[25]  Pembleton R G., Ryan L M, Gerstein B C. NMR Probe for combined homonuclear multiple pulse decoupling and magic angle spinning[J]. Rev Sci Instrum, 1977, 48(10): 1 286-1 289.
[26]  Fujimoto K, Shikada T, Omata K, et al. Vapor-phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett, 1984, (12): 2 047-2 050.
[27]  Stepanov A G, Luzgin M V, Romannikov V N, et al. NMR observation of the koch reaction in zeolite h-zsm-5 under mild conditions[J]. J Am Chem Soc, 1995, 117(12): 3 615-3 616.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133