全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磷脂酰胆碱SUV的NMR研究

DOI: 10.11938/cjmr20140411, PP. 572-578

Keywords: 核磁共振(NMR),双层膜结构,单室小脂质体,磷脂酰胆碱

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷脂酰胆碱(PC)是人和动物血液中大量存在的一类具有重要生物功能的磷脂,它和鞘磷脂一起形成了不同大小的密度脂蛋白,对血液中胆固醇等分子的转运和代谢起着至关重要的作用.脂蛋白中磷脂的组成和形态变化与某些疾病,如动脉粥样硬化、癌症和老年痴呆等的发生和发展密切相关,因此研究磷脂的组成形态将有助于明确磷脂的生物化学作用.该文采用一维(1D)和二维(2D)NMR技术对PC所形成的SUV(smallunilamellarvesicle)结构进行了分析,通过对PC磷脂头部氮甲基的检测分析,发现PC所形成的SUV为较为稳定的双层结构,这表明通常的磷脂脂蛋白可能是一种双层膜结构,而非通常所认为的单层结构.

References

[1]  Filippov A, Munavirov B, Grobner G, et al. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine[J]. Magn Reson Imaging, 2012, 30(3): 413―421.
[2]  Smaby J M, Brockman H L, Brown R E. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation[J]. Biochemistry, 1994, 33(31): 9 135―9 142.
[3]  Slotte J P. Sphingomyelin-cholesterol interactions in biological and model membranes[J]. Chem Phys Lipids, 1999, 102(1-2): 13―27.
[4]  Ramstedt B, Slotte J P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length[J]. Biophys J, 1999, 76(2): 908―915.
[5]  Brown D A, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts[J]. J Biol Chem, 2000, 275(23): 17 221―17 224.
[6]  Edidin M. The state of lipid rafts: from model membranes to cells[J]. Annu Rev Biophys Biomol Struct, 2003, 32: 257―283.
[7]  Mayor S, Rao M. Rafts: Scale-dependent, active lipid organization at the cell surface[J]. Traffic, 2004, 5(4): 231―240.
[8]  Pike L J. Lipid rafts: heterogeneity on the high seas[J]. Biochem J, 2004, 378: 281―292.
[9]  Simons K, Ikonen E. Functional rafts in cell membranes[J]. Nature, 1997, 387(6633): 569―572.
[10]  Niemela P, Hyvonen M T, Vattulainen I. Structure and dynamics of sphingomyelin bilayer: Insight gained through systematic comparison to phosphatidylcholine[J]. Biophys J, 2004, 87(5): 2 976―2 989.
[11]  Niemela P S, Hyvonen M T, Vattulainen I. Influence of chain length and unsaturation on sphingomyelin bilayers[J]. Biophys J, 2006, 90(3): 851―863.
[12]  Barenholz Y, Thompson T E. Sphingomyelin: biophysical aspects[J]. Chem Phys Lipids, 1999, 102(1-2): 29―34.
[13]  Murphy H C, AlaKorpela M, White J J, et al. Evidence for distinct behaviour of phosphatidylcholine and sphingomyelin at the low density lipoprotein surface[J]. Biochem Bioph Res Co, 1997, 234(3): 733―737.
[14]  Campos H, Genest J J Jr., Blijlevens E, et al. Low density lipoprotein particle size and coronary artery disease[J]. Arterioscler Thromb, 1992, 12(2): 187―195.
[15]  Havel R J. Citation classic - the distribution and chemical-composition of ultracentrifugally separated lipoproteins in human-serum[J]. Cc/Life Sci, 1983(46): 23―23.
[16]  Tall A R. Plasma high density lipoproteins. Metabolism and relationship to atherogenesis[J]. J Clin Invest, 1990, 86(2): 379―384.
[17]  Reichl D, Miller N E. The anatomy and physiology of reverse cholesterol transport[J]. Clin Sci, 1986, 70(3): 221―231.
[18]  Gordon D J, Rifkind B M. High-density lipoprotein - the clinical implications of recent studies[J]. New Engl J Med, 1989, 321(19): 1 311―1 316.
[19]  Miller N E. HDL metabolism and its role in lipid transport[J]. Eur Heart J, 1990, 11: 1―3.
[20]  Johnson W J, Mahlberg F H, Rothblat G H, et al. Cholesterol transport between cells and high-density-lipoproteins[J]. Biochimica et biophysica Acta, 1991, 1 085(3): 273―298.
[21]  Huang Y D, Voneckardstein A, Assmann G. Cell-derived unesterified cholesterol cycles between different HDLs and LDL for its effective esterification in plasma[J]. Arterioscler Thromb, 1993, 13(3): 445―458.
[22]  Bi Yun-chen(毕允晨), Wang Yu-juan(王玉娟), Wang Jun-feng(王俊峰). The nanodics: A novel tool to study membrane protein structure and function(Nanodisc 体系在膜蛋白结构与功能研究中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2011, 28(2): 177―189.
[23]  Fajardo V A, McMeekin L, LeBlanc P J. Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index[J]. J Membr Biol, 2011, 244(2): 97―103.
[24]  Schneider P B. Permanent sensitive stain for choline-containing phospholipids on thin-layer chromatograms[J]. J Lipid Res, 1966, 7(1): 169―170.
[25]  Jungalwala F B, Evans J E, McCluer R H. High-performance liquid chromatography of phosphatidylcholine and sphingomyelin with detection in the region of 200 nm[J]. Biochem J, 1976, 155(1): 55―60.
[26]  Mallol R, Rodriguez M A, Brezmes J, et al. Human serum/plasma lipoprotein analysis by NMR: application to the study of diabetic dyslipidemia[J]. Prog Nucl Magn Reson Spectr, 2013, 70: 1―24.
[27]  Mao J, Jiang L, Jiang B, et al. 1H-14N HSQC detection of choline-containing compounds in solutions[J]. J Magn Reson, 2010, 206(1): 157―160.
[28]  Mao Xi-an(毛希安). A simple method for clean water signal suppression(一个获得压水峰良好效果的简单方法)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(1): 1―6
[29]  Schmidt C F, Barenholz Y, Thompson T E. A nuclear magnetic resonance study of sphingomyelin in bilayer systems[J]. Biochemistry, 1977, 16(12): 2 649―2 656.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413