全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Computer Model for the Simulation of Nonspherical Particle Dynamics in the Human Respiratory Tract

DOI: 10.1155/2012/142756

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the study presented here deposition of spheres and nonspherical particles with various aspect ratios (0.01–100) in the human respiratory tract was theoretically modeled. Shape of the nonspherical particles was considered by the application of the latest aerodynamic diameter concepts. Particle deposition was predicted by using a stochastic model of the lung geometry and simulating particle transport trajectories according to the random-walk algorithm. Concerning fibers total deposition is significantly enhanced with respect to that of spheres for μm-sized particles, whereby at normal breathing conditions peripheral lung compartments serve as primary deposition targets. In the case of oblate disks, total deposition becomes mostly remarkable for submicron particles, with the bronchioli and alveoli being targeted to a high extent. Enhancement of the aerodynamic diameter and/or flow rate generally causes a displacement of deposition maxima from peripheral to more proximal lung regions. From these findings, it can be concluded that these particle classes may represent tremendous occupational hazards, especially if they are attached with radioactive elements or heavy metals.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133