OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
介质阻挡放电甲醇脱氢偶联一步合成乙二醇反应中氢气的催化作用
DOI: 10.1016/S1872-2067(14)60239-4, PP. 274-282
Keywords: 介质阻挡放电等离子体,氢气催化作用,乙二醇合成,氢原子,碳-氢键活化
Abstract:
?利用原位发射光谱表征和在线色谱分析,研究了甲醇介质阻挡放电脱氢偶联一步合成乙二醇反应中氢气的催化作用,考察了放电频率、甲醇和氢气进料量以及反应压力的影响.结果表明,在介质阻挡放电产生的非平衡等离子体中,H2不但能显著提高甲醇转化率,而且能显著提高乙二醇的选择性.在300℃,0.1MPa,反应器注入功率为11W,放电频率为12.0kHz,甲醇气体进料量为11.1mL/min,氢气进料量为80-180mL/min的条件下,甲醇转化率接近30%,乙二醇选择性大于75%.乙二醇收率与激发态氢原子的Hα谱线强度之间存在同增同减关系.由此推测,氢原子是起催化作用的活性氢物种.活性氢物种的生成途径是:基态氢分子通过与电子碰撞变成激发态,激发态氢分子通过第一激发态氢自动解离为基态氢原子.放电反应条件通过影响氢分子解离来影响氢气的催化作用.氢气在非平衡等离子体中显示的催化作用有可能为开辟新的化学合成途径提供重要机遇.
References
[1] | Lee D H, Kim T. Int J Hydrog Energy, 2013, 38: 6039
|
[2] | Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias F M, Ferreira C M. Int J Hydrog Energy, 2013, 38: 9145
|
[3] | Li H Q, Zou J J, Zhang Y P, Liu C J. J Chem Ind Eng (China) (李慧青, 邹吉军, 张月萍, 刘昌俊. 化工学报), 2004, 55: 1989
|
[4] | Li H Q, Zou J J, Zhang Y P, Liu C J. Chem Lett, 2004, 33: 744
|
[5] | Fantz U, Schalk B, Behringer K. New J Phys, 2000, 2: 71
|
[6] | Petrovic Z L, Phelps A V. Phys Rev E, 2009, 80: 016408/1
|
[7] | Yue H R, Zhao Y J, Ma X B, Gong J L. Chem Soc Rev, 2012, 41: 4218
|
[8] | Wen C, Li F Q, Cui Y Y, Dai W L, Fan K N. Catal Today, 2014, 233: 117
|
[9] | Ma X B, Chi H W, Yue H R, Zhao Y J, Xu Y, Lü J, Wang S P, Gong J L. AIChE J, 2013, 59: 2530
|
[10] | Song H Y, Jin R H, Kang M R, Chen J. Chin J Catal (宋河远, 靳荣华, 康美荣, 陈静. 催化学报), 2013, 34: 1035
|
[11] | Chen Q L, Yang W M, Teng J W. Chin J Catal (陈庆龄, 杨为民, 腾加伟. 催化学报), 2013, 34: 217
|
[12] | Zhang J, Yuan Q C, Zhang J L, Li T, Guo H C. Chem Commun, 2013, 49: 10106
|
[13] | Bauschlicher C W J, Langhoff S R, Walch S P. J Chem Phys, 1992, 96: 450
|
[14] | Futamura S, Kabashima H. IEEE Trans Ind Appl, 2004, 40: 1459
|
[15] | Yan Z C, Li C, Lin W H. Int J Hydrog Energy, 2009, 34: 48
|
[16] | Burlica R, Shih K Y, Hnatiuc B, Locke B R. Ind Eng Chem Res, 2011, 50: 9466
|
[17] | Rico V J, Hueso J L, Cotrino J, Gallardo V, Sarmiento B, Brey J J, Gonzalez-Elipe A R. Chem Commun, 2009: 6192
|
[18] | Rico V J, Hueso J L, Cotrino J, Gonzalez- Elipe A R. J Phys Chem A, 2010, 114: 4009
|
[19] | Wang B W, Zhang X, Bai H Y, Lü Y J, Hu S H. Front Chem Sci Eng, 2011, 5: 209
|
[20] | Lü Y J, Yan W J, Hu S H, Wang B W. J Fuel Chem Technol (吕一军, 闫文娟, 胡爽慧, 王保伟. 燃料化学学报), 2012, 40: 698
|
[21] | Wang Y F, You Y S, Tsai C H, Wang L C. Int J Hydrog Energy, 2010, 35: 9637
|
[22] | Worsley M A, Bent S F, Fuller N C M, Dalton T. J Appl Phys, 2006, 100: 083301/1
|
[23] | Liu X M, Johnson P V, Malone C P, Young J A, Kanik I, Shemansky D E. Astrophys J, 2010,716: 701
|
[24] | Lendvay G, Berces T, Marta F. J Phys Chem A, 1997, 101: 1588
|
[25] | Chuang Y Y, Radhakrishnan M L, Fast P L, Cramer C J, Truhlar D G. J Phys Chem A, 1999, 103: 4893
|
[26] | Han Y, Wang J G, Cheng D G, Liu C J. Ind Eng Chem Res, 2006, 45: 3460
|
[27] | Horacek J, Cizek M, Houfek K, Kolorenc P, Domcke W. Phys Rev A, 2006, 73: 022701/1
|
Full-Text
|
|
Contact Us
[email protected] QQ:3279437679
WhatsApp +8615387084133
|
|