全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

纳米尺度NiLa2O4尖晶石催化NaBH4还原亚胺制仲胺

DOI: 10.1016/S1872-2067(15)60921-4, PP. 1191-1196

Keywords: 亚胺,还原,仲胺,硼氢化钠,纳米尺度尖晶石,镧酸镍

Full-Text   Cite this paper   Add to My Lib

Abstract:

?由溶胶-凝胶法制得的Ni-La化合物经热分解制备了纳米尺度NiLa2O4尖晶石,在750℃焙烧后形成了结晶良好的尖晶石结构.采用差热分析、X射线衍射、透射电镜、扫描电镜和粒度分布分析等手段表征了该尖晶石的物理化学性质.结果表明,该纳米颗粒有规则的外形和确定的晶面,由平均粒径为40nm的规整半球晶粒组成.精修的晶胞参数a=3.861205?和c=12.6793?.在NaBH4选择还原亚胺制相应仲胺的反应中,该新型纳米NiLa2O4尖晶石可用作高效多相催化剂,得到了较高的产物产率.所有反应可在室温和相对较短的时间内完成.在优化的反应条件下,均可得到带有不同芳基的,包括带有吸电子和供电子基团的仲胺.该催化剂回收简便,重复使用4次,其催化活性未见明显下降.

References

[1]  Singh B, Guru S K, Sharma R, Bharate S S, Khan I A, Bhushan S, Bharate S B, Vishwakarma R A. Bioorg Med Chem Lett, 2014, 24: 4865
[2]  Logan R, Kong A C, Krise J P. J Pharm Sci, 2014, 103: 3287
[3]  Zhang Y, Quan Z J, Gong H P, Da Y X, Zhang Z, Wang X C. Tetrahedron, 2015, 71: 2113
[4]  Bujnowski K, Synoradzki L, Zevaco T A, Dinjus E, Augustynowicz-Kopec E, Napiorkowska A. Tetrahedron, 2015, 71: 158
[5]  Alsryfy A H, Mosaa Z A, Alrazzak N. Res J Pharm Biol Chem Sci, 2015, 6: 798
[6]  Camps P, Gomez E, Munoz-Torrero D, Font-Bardia M, Solans X. Tetrahedron, 2003, 59: 4143
[7]  Barbry D, Champagne P. Synth Commun, 1995, 25: 3503
[8]  Sepelak V, Becker K D. Mater Sci Eng A, 2004, A375-A377: 861
[9]  Khosravi I, Yazdanbakhsh M, Goharshadi E K, Youssefi A. Mater Chem Phys, 2011, 130: 1156
[10]  Yazdanbakhsh M, Khosravi I, Mashhoori M S, Rahimizadeh M, Shiri A, Bakavoli M. Mater Res Bull, 2012, 47: 413
[11]  Yazdanbakhsh M, Khosravi I, Goharshadi E K, Youssefi A. J Hazard Mater, 2010, 184: 684
[12]  de Lima S P, Vicentini V, Fierro J L G, Rangel M C. Catal Today, 2008, 133-135: 925
[13]  Khosravi I, Yazdanbakhsh M, Eftekhar M, Haddadi Z. Mater Res Bull, 2013, 48: 2213
[14]  Khosravi I, Eftekhar M, Bayraq S S. Synth React Inorg Met Org Nano-Metal Chem, 2014, 44: 227
[15]  Savoia D, Trombini C, Umani-Ronchi A. J Org Chem, 1978, 43: 2907
[16]  de Nie-Sarink M J, Pandit U K. Tetrahedron Lett, 1979, 20: 2449
[17]  Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H. Int J Hydrogen Energy, 2002, 27: 1029
[18]  Carey F A, Sundberg R J. Advanced Organic Chemistry, Part A: Structure and Mechanisms. 5th ed. New York: Springer, 2007. 169
[19]  Fernandes V R, Pinto A M F R, Rangel C M. Int J Hydrogen Energy, 2010, 35: 9862
[20]  Cho B T, Kang S K. Tetrahedron, 2005, 61: 5725
[21]  Kazemi F, Kiasat A R, Sarvestani E. Chin Chem Lett, 2008, 19: 1167
[22]  Yang Y H, Liu S X, Li J Z, Tian X, Zhen X L, Han J R. Synth Commun, 2012, 42: 2540
[23]  Gawaskar S, Schepmann D, Bonifazi A, Wünsch B. Bioorg Med Chem, 2014, 22: 6638
[24]  Abdel-Magid A F, Carson K G, Haris B D, Maryanoff C A, Shah R D. J Org Chem, 1996, 61: 3849
[25]  Kascheres A, Rodrigues R A F. Tetrahedron, 1996, 52: 12919
[26]  Liu P S. J Org Chem, 1987, 52: 4717
[27]  Shawe T T, Sheils C J, Gray S M, Conard J L. J Org Chem, 1994, 59: 5841
[28]  Baruah B, Dutta M P, Boruah A, Prajapati D, Sandhu J S. Synlett, 1999: 409
[29]  Kano S, Tanaka Y, Sugino E, Hibino S. Synthesis, 1980: 695
[30]  Hoffman C, Tanke R S, Miller M J. J Org Chem, 1989, 54: 3750
[31]  Itsuno S, Sakurai Y, Shimizu K, Ito K. J Chem Soc, Perkin Trans 1, 1990: 1859
[32]  Itsuno S, Sakurai Y, Shimizu K, Ito K. J Chem Soc, Perkin Trans 1, 1989: 1548
[33]  Aniz C U, Nair T D R. Open J Phys Chem, 2011, 1: 124
[34]  Ghose J, Murthy K S R C. J Catal, 1996, 162: 359
[35]  Jiang J, Yan M Y. Mater Lett, 2007, 61: 4276
[36]  Yang J, Peng J, Liu K C, Guo R, Xu D L, Jia J P. J Hazard Mater, 2007, 143: 379
[37]  Lv S S, Chen X G, Ye Y, Yin S H, Cheng J P, Xia M S. J Hazard Mater, 2009, 171: 634
[38]  Zhou Z, Yan J, Wang Y X. Chem, 1998, 4: 23
[39]  Yang G Q, Han B, Sun Z T, Yan L M, Wang X Y. Dyes Pigm, 2002, 55: 9

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133