全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

电催化剂设计中表面和界面工程的最新进展

DOI: 10.1016/S1872-2067(15)60911-1, PP. 1476-1493

Keywords: 合成,表面工程,界面工程,电催化,复合结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?电催化已发展为一种涉及电化学、表面科学、材料科学和催化科学等众多科学分支的交叉学科和综合技术,在工农业生产、经济和国防建设、能源开发和环境保护等方面发挥了不可或缺的作用.金属纳米催化剂的可控合成和创新构建,极大地推动了电催化的广泛应用和巨大进展.过渡金属尤其是贵金属Pt、Pd等电催化剂,在电催化中表现出良好的选择性、活性和稳定性,很难完全被其他材料所取代.制约电催化可持续发展的瓶颈问题是,如何设计、合成和构建高性能低成本的金属纳米催化剂.为实现这一目标,人们付出了大量的努力并取得了一些可喜的进展.电催化是发生在电解质与电极材料表面和界面的异相催化反应,金属纳米电催化剂的性能与其形貌、结构、尺寸和组成相关.本文着力总结和探讨如何从表面工程和界面工程角度设计、合成和构筑金属纳米结构及其复合结构,以实现金属电催化剂性能和成本的双优化.本文提出了在金属纳米结构及其复合结构的设计、合成和构筑过程中需要考虑的几个重要的表面和界面因素,即表面面积、表面晶面、活性位点和界面结构等.首先,有效表面面积越大,越有利于电催化反应.我们总结了增大催化剂有效活性面积的四种有效方法,包括减小颗粒尺寸、制成薄层二维纳米结构、增大粗糙度、形成中空、多孔或介孔及框架结构等.其次,表面晶面也可决定电催化的性能.我们简单总结了低指数晶面和高指数晶面在表面能、晶面形成和催化活性上的"挑战与机遇"矛盾关系,并简要阐述了晶面选择性即晶面效应以及晶面与尺寸的依赖关系.再次,活性位点一般指的是低配位表面原子位点,是电催化反应的决定因素之一.我们描述了活性位点与表面和界面结构特征、纳米晶表面晶面、表面缺陷和空穴、表面面积和粒子尺寸等的依赖关系.最后,界面结构工程是调控电催化性能的最丰稔因素.我们简述了界面结构的形成、分类及其对优化界面活性位点的成分和几何结构、表面悬键和原子配位数、电子结构与电子传递、质子传输和物种交换等方面调控作用,并在界面工程的基础上推介了贵金属基复合结构的合成、组装的几种典型方式.本文以具体示例的形式,分别从表面工程和界面工程的角度,扼要介绍了本课题组最近在甲酸氧化、氧还原、析氢等电催化反应体系中贵金属基纳米结构及其复合纳米结构电催化剂的设计、合成与构筑的具体做法.我们分别介绍了低指数晶面和高指数晶面的表面设计对于提高催化剂性能的关键作用.对于低指数晶面,我们重点介绍了如何获得相似尺寸的不同表面晶面以研究其晶面效应,如何维持相同晶面调节尺寸以研究其尺寸效应,如何建造与电极有良好电学接触的低指数晶面纳米结构,以利于提升其电催化性能.对于高指数晶面,介绍了几种形成高指数晶面的途径,并阐明了其晶面对电催化性能的影响.另一方面,我们从金属纳米结构及其复合结构的成分和结构调控策略介绍了界面构建对于提升电催化性能的奇妙作用,包括建造多金属纳米结构、与二维材料负载组装和利用界面极化.由此,本文总结了表面和界面工程对于电催化剂设计、合成和构筑目前面临的三个关键挑战.

References

[1]  Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
[2]  Kim T W, Choi K S. Science, 2014, 343: 990
[3]  Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Chem Rev, 2007, 107: 3904
[4]  Zhang H W, Shen P K. Chem Rev, 2012, 112: 2780
[5]  Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Angew Chem Int Ed, 2015, 54: 3669
[6]  Faber M S, Lukowski M A, Ding Q, Kaiser N S, Jin S. J Phys Chem C, 2014, 118: 21347
[7]  Hamnett A. Catal Today, 1997, 38: 445
[8]  Bing Y H, Liu H S, Zhang L, Ghosh D, Zhang J J. Chem Soc Rev, 2010, 39: 2184
[9]  Gandhi H S, Graham G W, McCabe R W. J Catal, 2003, 216: 433
[10]  Xin H L, Holewinski A, Schweitzer N, Nikolla E, Linic S. Top Catal, 2012, 55: 376
[11]  Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew Chem Int Ed, 2009, 48: 60
[12]  Murray C B, Sun S H, Doyle H, Betley T. MRS Bulletin, 2001, 26: 985
[13]  Marks L D. Rep Prog Phys, 1994, 57: 603
[14]  Wulff G. Zeitschrift Fur Krystallographie Und Mineralogie, 1901, 34: 449
[15]  LaMer V K, Dinegar R H. J Am Chem Soc, 1950, 72: 4847
[16]  Wang Z L. J Phys Chem B, 2000, 104: 1153
[17]  Wang C M, Zhong W, Liao L W, Xiong Y J. Sci Sin Chim (王成名, 钟玮, 廖玲文, 熊宇杰. 中国科学: 化学), 2013, 43:1614
[18]  Xia B Y, Yan Y, Wang X, Lou X W. Mater Horiz, 2014, 1: 379
[19]  Nie Y, Li L, Wei Z D. Chem Soc Rev, 2015, 44: 2168
[20]  Wu Y E, Wang D S, Li Y D. Chem Soc Rev, 2014, 43: 2112
[21]  You H J, Yang S C, Ding B J, Yang H. Chem Soc Rev, 2013, 42: 2880
[22]  Wang X L, Wu B H, Chen G X, Zhao Y, Liu P X, Dai Y, Zheng N F. Nanoscale, 2014, 6: 6798
[23]  Saleem F, Zhang Z C, Xu B, Xu X B, He P L, Wang X. J Am Chem Soc, 2013, 135: 18304
[24]  Liang H Y, Li Z P, Wang W Z, Wu Y S, Xu H X. Adv Mater, 2009, 21: 4614
[25]  Lv C, Zhang X Y, Mu C L, Wu D, Wang C M, Zhang Q L. J Nanosci Nanotechnol, 2015, 15: 2761
[26]  Lim B, Xia Y N. Angew Chem Int Ed, 2011, 50: 76
[27]  Rezaei S J T, Bide Y, Nabid M R. Synth Metals, 2011, 161: 1414
[28]  Zhang H, Xia X H, Li W Y, Zeng J, Dai Y Q, Yang D R, Xia Y N. Angew Chem Int Ed, 2010, 49: 5296
[29]  Cao C B, Chen Z, An X Q, Zhu H S. J Phys Chem C, 2008, 112: 9
[30]  Okamoto M, Fujigaya T, Nakashima N. Small, 2009, 5: 735
[31]  Lou X W, Archer L A, Yang Z. Adv Mater, 2008, 20: 3987
[32]  Guo Y G, Hu J S, Wan L J. Adv Mater, 2008, 20: 2878
[33]  Bianchini C, Shen P K. Chem Rev, 2009, 109: 4183
[34]  Peng Z M, You H J, Wu J B, Yang H. Nano Lett, 2010, 10: 1492
[35]  Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Science, 2014, 343: 1339
[36]  Li R, Hu J H, Deng M S, Wang H L, Wang X J, Hu Y L, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y J. Adv Mater, 2014, 26: 4783
[37]  Nohra B, Moll H E, Rodriguez Albelo L M, Mialane P, Marrot J, Mellot-Draznieks C, O'Keeffe M, Biboum R N, Lemaire J, Keita B, Nadjo L, Dolbecq A. J Am Chem Soc, 2011, 133: 13363
[38]  Wittstock A, Wichmann A, Baumer M. ACS Catal, 2012, 2: 2199
[39]  Yan M, Jin T N, Ishikawa Y, Minato T, Fujita T, Chen L Y, Bao M, Asao N, Chen M W, Yamamoto Y. J Am Chem Soc, 2012, 134: 17536
[40]  Cherevko S, Kulyk N, Chung C H. Langmuir, 2012, 28: 3306
[41]  Schaefer A, Ragazzon D, Wittstock A, Walle L E, Borg A, B?umer M, Sandell A. J Phys Chem C, 2012, 116: 4564
[42]  Déronzier T, Morfin F, Massin L, Lomello M, Rousset J L. Chem Mater, 2011, 23: 5287
[43]  Guo D J, Ding Y. Electroanal, 2012, 24: 2035
[44]  Yan X L, Meng F H, Xie Y, Liu J G, Ding Y. Sci Rep, 2012, 2: 941
[45]  Xu C X, Su J X, Xu X H, Liu P P, Zhao H J, Tian F, Ding Y. J Am Chem Soc, 2007, 129: 42
[46]  Xu C X, Wang L Q, Wang R Y, Wang K, Zhang Y, Tian F, Ding Y. Adv Mater, 2009, 21: 2165
[47]  Gu X H, Cong X, Ding Y. ChemPhysChem, 2010, 11: 841
[48]  Xu C X, Wang R Y, Chen M W, Zhang Y, Ding Y. Phys Chem Chem Phys, 2010, 12: 239
[49]  Gu X H, Xu L Q, Tian F, Ding Y. Nano Res, 2009, 2: 386
[50]  Ge X B, Yan X L, Wang R Y, Tian F, Ding Y. J Phys Chem C, 2009, 113: 7379
[51]  Quan Z W, Wang Y X, Fang J Y. Acc Chem Res, 2013, 46: 191
[52]  Yu Y, Zhang Q B, Liu B, Lee J Y. J Am Chem Soc, 2010, 132: 18258
[53]  Xiong Y J, Xia Y N. Adv Mater, 2007, 19: 3385
[54]  Li Y, Boone E, El-Sayed M A. Langmuir, 2002, 18: 4921
[55]  Xie S F, Choi S I, Xia X H, Xia Y N. Current Opinion Chem Eng, 2013, 2: 142
[56]  Xiong Y J, Wiley B, Xia Y N. Angew Chem Int Ed, 2007, 46: 7157
[57]  Tian N, Zhou Z Y, Sun S G. J Phys Chem C, 2008, 112: 19801
[58]  Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P D. Angew Chem Int Ed, 2006, 45: 7824
[59]  Sun Y G, Xia Y N. Science, 2002, 298: 2176
[60]  Tian N, Zhou Z Y, Yu N F, Wang L Y, Sun S G. J Am Chem Soc, 2010, 132: 7580
[61]  Jin M S, Zhang H, Xie Z X, Xia Y N. Angew Chem Int Ed, 2011, 50: 7850
[62]  Zhang J, Langille M R, Personick M L, Zhang K, Li S Y, Mirkin C A. J Am Chem Soc, 2010, 132: 14012
[63]  Wang F, Li C H, Sun L D, Wu H S, Ming T, Wang J F, Yu J C, Yan C H. J Am Chem Soc, 2011, 133:1106
[64]  Zhang L, Zhang J W, Kuang Q, Xie S F, Jiang Z Y, Xie Z X, Zheng L S. J Am Chem Soc, 2011, 133: 17114
[65]  Kim D, Lee Y W, Lee S B, Han S W. Angew Chem Int Ed, 2012, 51: 159
[66]  Huang X Q, Zhao Z P, Fan J M, Tan Y M, Zheng N F. J Am Chem Soc, 2011, 133: 4718
[67]  Yu T, Kim D Y, Zhang H, Xia Y N. Angew Chem Int Ed, 2011, 50: 2773
[68]  Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Science, 2009, 324: 1302
[69]  Lee H, Habas S E, Somorjai G A, Yang P D. J Am Chem Soc, 2008, 130: 5406
[70]  Teng X W, Feygenson M, Wang Q, He J Q, Du W X, Frenkel A I, Han W Q, Aronson M. Nano Lett, 2009, 9: 3177
[71]  Kim J, Lee Y, Sun S H. J Am Chem Soc, 2010, 132: 4996
[72]  Wu Y E, Cai S F, Wang D S, He W, Li Y D. J Am Chem Soc, 2012, 134: 8975
[73]  Wu J B, Zhang J L, Peng Z M, Yang S C, Wagner F T, Yang H. J Am Chem Soc, 2010, 132: 4984
[74]  Fu G T, Xia B Y, Ma R G, Chen Y, Tang Y W, Lee J M. Nano Energy, 2015, 12: 824
[75]  Yin A X, Min X Q, Zhu W, Liu W C, Zhang Y W, Yan C H. Chem Eur J, 2012, 18: 777
[76]  Wang L, Yamauchi Y. Chem Mater, 2011, 23: 2457
[77]  Sasaki K, Naohara H, Choi Y M, Cai Y, Chen W F, Liu P, Adzic R R. Nat Commun, 2012, 3: 1115
[78]  Wang C M, Wang L L, Long L, Ma L, Wang L M, Li Z Q, Xiong Y J. J Mater Chem, 2012, 22, 8195
[79]  Bai Y, Long R, Wang C M, Gong M, Li Y R, Huang H, Xu H, Li Z Q, Deng M S, Xiong Y J. J Mater Chem A, 2013, 1: 4228
[80]  Narayanan R, El-Sayed M A. Nano Lett, 2004, 4: 1343
[81]  Jin M S, He G N, Zhang H, Zeng J, Xie Z X, Xia Y N. Angew Chem Int Ed, 2011, 50: 10560
[82]  van Hardeveld R, Hartog F. Surf Sci, 1969, 15: 189
[83]  Zhao X Y, Luo B B, Long R, Wang C M, Xiong Y J. J Mater Chem A, 2015, 3: 4134
[84]  Wang L L, Ge J, Wang A L, Deng M S, Wang X J, Bai S, Li R, Jiang J, Zhang Q, Luo Y, Xiong Y J. Angew Chem Int Ed, 2014, 53: 5107
[85]  Bai Y, Zhang W H, Zhang Z H, Zhou J, Wang X J, Wang C M, Huang W X, Jiang J, Xiong Y J. J Am Chem Soc, 2014, 136: 14650
[86]  Lebedeva N P, Rodes A, Feliu J M, Koper M T M, van Santen R A. J Phys Chem B, 2002, 106: 9863
[87]  Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732
[88]  Taylor H S. Proc R Soc London Ser A, 1925, 108: 105
[89]  Marks L D. Rep Prog Phys, 1994, 57: 603
[90]  Tian G L, Zhang Q, Zhang B S, Jin Y G, Huang J Q, Su D S, Wei F. Adv Funct Mater, 2014, 24: 5956
[91]  Xing J, Jiang H B, Chen J F, Li Y H, Wu L, Yang S, Zheng L R, Wang H F, Hu P, Zhao H J, Yang H G. J Mater Chem A, 2013, 1: 15258
[92]  Sun S H, Murray C B, Weller D, Foiks L, Moser A. Science, 2000, 287: 1989
[93]  Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P D. Nat Mater, 2007, 6: 692
[94]  Esposito D V, Hunt S T, Stottlemyer A L, Dobson K D, McCandless B E, Birkmire R W, Chen J G G. Angew Chem Int Ed, 2010, 49: 9859
[95]  Wang L L, Johnson D D. J Am Chem Soc, 2009, 131: 14023
[96]  Loukrakpam R, Luo J, He T, Chen Y S, Xu Z C, Njoki P N, Wanjala B N, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C J. J Phys Chem C, 2011, 115: 1682
[97]  Liu Y, Chi M F, Mazumder V, More K L, Soled S, Henao J D, Sun S H. Chem Mater, 2011, 23: 4199
[98]  Hwang S J, Kim S K, Lee J G, Lee S C, Jang J H, Kim P, Lim T H, Sung Y E, Yoo S J. J Am Chem Soc, 2012, 134: 19508
[99]  Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X. Angew Chem Int Ed, 2015, 54: 3797
[100]  Ferrando R, Jellinek J, Johnston R L. Chem Rev, 2008, 108: 845
[101]  Roy R, Komamenis S, Roy D M. Mater Res Soc Symp Proc, 1984, 32: 347
[102]  Xi G C, Ye J H, Ma Q, Su N, Bai H, Wang C. J Am Chem Soc, 2012, 134: 6508
[103]  Yu T, Zeng J, Lim B, Xia Y N. Adv Mater, 2010, 22: 5188
[104]  Lee H, Yoon S W, Kim E J, Park J. Nano Lett, 2007, 7: 778
[105]  Zheludkevich M L, Salvado I M, Ferreira M G S. J Mater Chem, 2005, 15: 5099
[106]  Joo J, Park D H, Jeong M Y, Lee Y B, Kim H S, Choi W J, Park Q H, Kim H J, Kim D C, Kim J. Adv Mater, 2007, 19: 2824
[107]  Gurrappa I, Binder L. Sci Technol Adv Mater, 2008, 9: 043001
[108]  Rieter W J, Taylor K M L, Lin W B. J Am Chem Soc, 2007, 129: 9852
[109]  Xiong Y J, Chen J Y, Wiley B, Xia Y N, Aloni S, Yin Y D. J Am Chem Soc, 2005, 127: 7332
[110]  Wiley B J, Herricks T, Sun Y G, Xia Y N. Nano Lett, 2004, 4: 1733
[111]  Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Nano Lett, 2006, 6: 765
[112]  Xiong Y J, Cai H, Wiley B J, Wang J G, Kim M J, Xia Y N. J Am Chem Soc, 2007, 129: 3665
[113]  Caruso F, Caruso R A, Moehwald H. Science, 1998, 282: 1111
[114]  Walcarius A. Chem Soc Rev, 2013, 42: 4098
[115]  Zhao D, Budhi S, Koodali R T. ACS Symp Ser, 2010, 1045: 97
[116]  Ren Y, Ma Z, Bruce P G. Chem Soc Rev, 2012, 41: 4909.
[117]  Walcarius A. Electroanalysis, 2008, 20: 711
[118]  Yang J, Voiry D, Ahn S J, Kang D, Kim A Y, Chhowalla M, Shin H S. Angew Chem Int Ed, 2013, 52: 13751
[119]  Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H. J Mater Chem A, 2014, 2: 360
[120]  Kong D S, Wang H T, Lu Z Y, Cui Y. J Am Chem Soc, 2014, 136, 4897
[121]  Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201
[122]  Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321, 385
[123]  Geim A K. Science, 2009, 324: 1530
[124]  Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K, Wallace R M. ACS Nano, 2014, 8: 642
[125]  Zhang H, Jin M S, Xiong Y J, Lim B, Xia Y N. Acc Chem Res, 2013, 46: 1783
[126]  Wang C M, Bai Y, Wang L L, Long R, Liu D, Deng M S, Xiong Y J. Sci Sin Chim (王成名, 柏彧, 王利利, 龙冉, 刘东, 邓明森, 熊宇杰. 中国科学: 化学), 2013, 43: 744
[127]  Long R, Mao K K, Ye X D, Yan W S, Huang Y B, Wang J Y, Fu Y, Wang X S, Wu X J, Xie Y, Xiong Y J. J Am Chem Soc, 2013, 135: 3200
[128]  Li B, Long L, Zhong X L, Bai Y, Zhu Z J, Zhang X, Zhi M, He J W, Wang C M, Li Z Y, Xiong Y J. Small, 2012, 8: 1710
[129]  Long R, Wu D, Li Y P, Bai Y, Wang C M, Song L, Xiong Y J. Nano Res, 2015, DOI: 10.1007/s12274-015-0722-1.
[130]  Ma L, Wang C M, Xia B Y, Mao K K, He J W, Wu X J, Xiong Y J, Lou X W. Angew Chem Int Ed, 2015, 54: 5666
[131]  Komanicky V, Menzel A, You H. J Phys Chem B, 2005, 109: 23550
[132]  Kuzume A, Herrero E, Feliu J M. J Electroanal Chem, 2007, 599: 333
[133]  Macia M D, Campina J M, Herrero E, Feliu J M. J Electroanal Chem, 2004, 564: 141
[134]  Somorjai G A, Blakely D W. Nature, 1975, 258: 580
[135]  Somorjai G A. Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, 1981.
[136]  Somorjai G A. Science, 1985, 227: 902
[137]  Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. J Electroanal Chem, 1992, 340: 213
[138]  Ahmadi T S, Wang Z L, Green T G, Henglein A, El-Sayed M A. Science, 1996, 272: 1924
[139]  Grubb W T. Nature, 1963, 198: 883
[140]  Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Science, 2007, 315: 493
[141]  Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Nat Mater, 2007, 6: 241
[142]  Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Chem Soc Rev, 2011, 40: 4167
[143]  Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315: 220
[144]  Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443
[145]  Ma L, Wang C M, Gong M, Liao L W, Long R, Wang J G, Wu D, Zhong W, Kim M J, Chen Y X, Xie Y, Xiong Y J. ACS Nano, 2012, 6: 9797
[146]  Wang C M, Ma L, Liao L W, Bai S, Long R, Zuo M, Xiong Y J. Sci Rep, 2013, 3: 2580
[147]  Shen Q M, Min Q H, Shi J J, Jiang L P, Zhang J R, Hou W H, Zhu J J. J Phys Chem C, 2009, 113: 1267
[148]  Qiu J D, Wang G C, Liang R P, Xia X H, Yu H W. J Phys Chem C, 2011, 115: 15639
[149]  Choi K S, McFarland E W, Stucky G D. Adv Mater, 2003, 15: 2018
[150]  Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J, Crabtree G W. J Am Chem Soc, 2004, 126: 2316
[151]  Kim P, Epstein A K, Khan M, Zarzar L D, Lipomi D J, Whitesides G M, Aizenberg J. Nano Lett, 2012, 12: 527
[152]  Allred D B, Sarikaya M, Baneyx F, Schwartz D T. Nano Lett, 2005, 5: 609
[153]  Lim S K, Kim M Y, Oh T S. Thin Solid Films, 2009, 517: 4199
[154]  Lin E C, Cole J J, Jacobs H O. Nano Lett, 2010, 10: 4494
[155]  Papageorgiou N, Maier W F, Gr?tzel M. J Electrochem Soc, 1997, 144: 876
[156]  Bai S, Xiong Y J. Sci Adv Mater, 2015, DOI:10.1166/sam.2015. 2261
[157]  O'Hayre R P, Cha S W, Colella W. Prinz F B. Fuel Cell Fundamentals. New York: John Wiley and Sons, 2006. 8
[158]  Steele B C H, Heinzel A. Nature, 2001, 414: 345
[159]  Litster S, McLean G. J Power Sources, 2004, 130: 61
[160]  Winter M, Brodd R J. Chem Rev, 2004, 104: 4245
[161]  Cropper M A J, Geiger S, Jollie D M. J Power Sources, 2004, 131: 57
[162]  Iwasita T. Electrochim Acta, 2002, 47: 3663
[163]  Kreuer K D. J Membrane Sci, 2001, 185: 29
[164]  Jiang K, Zhang H X, Zou S Z, Cai W B. Phys Chem Chem Phys, 2014, 16: 20360
[165]  O'Mullane A P. Nanoscale, 2014, 6: 4012
[166]  Bond G C. Surf Sci, 1985, 156: 966
[167]  Nesselberger M, Ashton S, Meier J C, Katsounaros I, Mayrhofer K J J, Arenz M. J Am Chem Soc, 2011, 133: 17428
[168]  Peng Z M, Yang H. J Am Chem Soc, 2009, 131: 7542
[169]  Peng Z M, Yang H. Nano Today, 2009, 4: 143
[170]  Sun Y F, Gao S, Lei F C, Xie Y. Chem Soc Rev, 2015, 44: 623
[171]  Sun Y F, Gao S, Xie Y. Chem Soc Rev, 2014, 43: 530
[172]  Zhang X D, Xie Y. Chem Soc Rev, 2013, 42: 8187
[173]  Huang X Q, Tang S H, Mu X L, Dai Y, Chen G X, Zhou Z Y, Ruan F X, Yang Z L, Zheng N F. Nat Nanotechnol, 2011, 6: 28
[174]  Li H, Chen G X, Yang H Y, Wang X L, Liang J H, Liu P X, Chen M, Zheng N F. Angew Chem Int Ed, 2013, 52: 8368
[175]  Jang K, Kim H J, Son S U. Chem Mater, 2010, 22: 1273
[176]  Duan H H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H P, Niu Z Q, Mao J J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y D. Nat Commun, 2014, 5: 3093
[177]  Yin A X, Liu W C, Ke J, Zhu W, Gu J, Zhang Y W, Yan C H. J Am Chem Soc, 2012, 134: 20479
[178]  Huang X, Li S Z, Huang Y Z, Wu S X, Zhou X Z, Li S Z, Gan C L, Boey F, Mirkin C A, Zhang H. Nat Commun, 2011, 2: 292
[179]  Cao Z W, Fu H B, Kang L T, Huang L W, Zhai T Y, Ma Y, Yao J N. Mater Chem, 2008, 18: 2673
[180]  Kibsgaard J, Chen Z B, Reinecke B N, Jaramillo T F. Nat Mater, 2012, 11: 963
[181]  Lertanantawong B, O'Mullane A P, Surareungchai W, Somasundrum M, Burke L D, Bond A M. Langmuir, 2008, 24: 2856
[182]  Nagle L C, Garbarino S, Burke L D. ECS Trans, 2010, 25: 3
[183]  Hammer B. Top Catal, 2006, 37: 3
[184]  Liu Y W, Cheng H, Lyu M J, Fan S J, Liu Q H, Zhang W S, Zhi Y D, Wang C M, Xiao C, Wei S Q, Ye B J, Xie Y. J Am Chem Soc, 2014, 136: 15670
[185]  Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv Mater, 2013, 25: 5807
[186]  Roxlo C B, Deckman H W, Gland J, Cameron S D, Chianelli R R. Science, 1987, 235: 1629
[187]  Chianelli R R, Ruppert A F, Behal S K, Kear B H, Wold A, Kershaw R. J Catal, 1985, 92: 56
[188]  Xin H L, Holewinski A, Schweitzer N, Nikolla E, Linic S. Top Catal, 2012, 55: 376
[189]  Reilly J P, O'Connell D, Barnes C J. J Phys Condens Matter, 1999, 11: 8417
[190]  Snyder J, Fujita T, Chen M W, Erlebacher J. Nat Mater, 2010, 9: 904
[191]  Bai S, Wang C M, Jiang W Y, Du N N, Li J, Du J T, Long R, Li Z Q, Xiong Y J. Nano Res, 2015, DOI: 10.1007/s12274-015-0770-6
[192]  Qu L T, Liu Y, Baek J B, Dai L M. ACS Nano, 2010, 4: 1321
[193]  Kong X K, Chen C L, Chen Q W. Chem Soc Rev, 2014, 43: 2841
[194]  Kolpak A M, Grinberg I, Rappe A M. Phys Rev Lett, 2007, 98: 166101
[195]  Vayenas C G, Bebelis S, Ladas S. Nature, 1990, 343: 625
[196]  Bai S, Wang C M, Deng M S, Gong M, Bai Y, Jiang J, Xiong Y J. Angew Chem Int Ed, 2014, 53: 12120
[197]  Koenigsmann C, Wong S S. Energy Environ Sci, 2011, 4: 1161
[198]  Carreón-González C E, Medina J D L T, Piraux L, Encinas A. Nano Lett, 2011, 11: 2023
[199]  Day T M, Unwin P R, Wilson N R, Macpherson J V. J Am Chem Soc, 2005, 127: 10639
[200]  Koenigsmann C, Santulli A C, Gong K P, Vukmirovic M B, Zhou W P, Sutter E, Wong S S, Adzic R R. J Am Chem Soc, 2011, 133: 9783
[201]  Heyderman L J, Schift H, David C, Ketterer B, Auf der Maur M, Gobrecht J. Microelectronic Engineering, 2001, 57-58: 375
[202]  Park S, Boo H, Lee S Y, Kim H M, Kim K B, Kim H C, Chung T D. Electrochim Acta, 2008, 53: 6143
[203]  Protsenko V S, Danilov F I. Metal Finishing, 2010, 108: 28
[204]  Iwasita T, Xia X H, Liess H-D, Vielstich W. J Phys Chem B, 1997, 101: 542
[205]  García H, Roth H D. Chem Rev, 2002, 102: 3947
[206]  Chng L L, Erathodiyil N, Ying J Y. Acc Chem Res, 2013, 46: 1825
[207]  Rosca V, Duca M, de Groot M T, Koper M T M. Chem Rev, 2009, 109: 2209
[208]  Trasatti S. Int J Hydrogen Energy, 1995, 20: 835
[209]  Du J L, Chen Z F, Chen C C, Meyer T J. J Am Chem Soc, 2015, 137: 3193
[210]  Jin L H, Fang Y X, Wen D, Wang L, Wang E K, Dong S J. ACS Nano, 2011, 5: 5249
[211]  Wang C M, Cui H. Luminescence, 2007, 22: 35
[212]  Dong Y P, Gao T T, Zhou Y, Chu X F, Wang C M. Spectrochim Acta A, 2015, 134: 225
[213]  Dasari R, Zamborini F P. J Am Chem Soc, 2008, 130: 16138
[214]  Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22: 1027
[215]  Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Anal Chem, 2015, 87: 230
[216]  Wang J. Chem Rev, 2008, 108: 814
[217]  Schulte A, Schuhmann W. Angew Chem Int Ed, 2007, 46: 8760
[218]  Qian T C, Wang Y X. Med Biol Eng Comput, 2010, 48: 1023
[219]  Zhou M, Dong S J. Acc Chem Res, 2011, 44: 1232
[220]  Sage A T, Besant J D, Lam B, Sargent E H, Kelley S O. Acc Chem Res, 2014, 47: 2417
[221]  Joglekar M, Trewyn B G. Biotechnol J, 2013, 8: 931
[222]  Li C M, Hu W H. J Electroanal Chem, 2013, 688: 20
[223]  Dong Y P, Zhou Y, Ding Y, Chu X F, Wang C M. Anal Methods, 2014, 6: 9367
[224]  Dong Y P, Gao T T, Chu X F, Chen J, Wang C M. J Lumin, 2014, 154: 350
[225]  Kim E, Kim K, Yang H, Kim Y T, Kwak J. Anal Chem, 2003, 75: 5665
[226]  Brillas E, Sirés I, Oturan M A. Chem Rev, 2009, 109: 6570
[227]  Zhou M H, Dai Q Z, Lei L C, Ma C A, Wang D H. Environ Sci Technol, 2005, 39: 363
[228]  Panizza M, Bocca C, Cerisola G. Water Res, 2000, 34: 2601
[229]  Murphy O J, Hitchens G D, Kaba L, Verostko C E. Water Res, 1992, 26: 443
[230]  Kim H, Boysen D A, Newhouse J M, Spatocco B L, Chung B, Burke P J, Bradwell D J, Jiang K, Tomaszowska A A, Wang K L, Wei W F, Ortiz L A, Barriga S A, Poizeau S M, Sadoway D R. Chem Rev, 2013, 113: 2075
[231]  Wang Z L, Xu D, Xu J J, Zhang X B. Chem Soc Rev, 2014, 43: 7746
[232]  Li Y G, Dai H J. Chem Soc Rev, 2014, 43: 5257
[233]  Black R, Lee J H, Adams B, Mims C A, Nazar L F. Angew Chem Int Ed, 2013, 52: 392
[234]  Winter M, Brodd R J. Chem Rev, 2004, 104: 4245
[235]  ?impraga R P, Conway B E. Electrochim Acta, 1998, 43: 3045
[236]  Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat Mater, 2005, 4: 366
[237]  You B, Jiang N, Sheng M L, Sun Y J. Chem Commun, 2015, 51: 4252
[238]  Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Chem Rev, 2010, 110: 6446
[239]  Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. J Phys Chem B, 2000, 104: 8920

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413