全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

含氧催化剂的17O固体核磁共振谱学研究

DOI: 10.1016/S1872-2067(15)60931-7, PP. 1494-1504

Keywords: 氧-17,固体核磁共振,催化剂,氧化物,氢氧化物

Full-Text   Cite this paper   Add to My Lib

Abstract:

?含氧催化剂在工业催化等多个领域有重要应用.氧离子半径很大,而且往往出现在材料的关键位点,所以一般认为氧与吸附和催化过程密切相关.17O是氧的唯一有核磁共振响应的稳定同位素,其化学范围极宽(>1000ppm),能灵敏反映结构信息;由于是四极核(I>1/2),其四极耦合作用也能用于结构研究.因此,17O固体核磁共振谱学应是一种能提供丰富催化剂结构信息的理想表征手段.然而,目前17O固体核磁共振研究催化剂并非常规手段,这主要是因为17O的天然丰度很低,同位素标记较为昂贵和困难,其较低的旋磁比和较大的四极耦合作用导致谱线加宽,难以获得高质量的谱图并加以解析.随着高磁场和高速魔角旋转等技术的发展,17O固体核磁共振谱学可以用于一系列简单氧化物和沸石等催化剂的结构研究.近年来,随着双旋转(DOR)、动态角旋转(DAS)、多量子魔角旋转(MQMAS)以及卫星跃迁魔角旋转(STMAS)等新技术的发展,能够消除二阶四极耦合作用带来的谱线展宽,显著提升谱图分辨率.而诸如交叉极化(CP)和旋转回波双共振(REDOR)技术,已经能用于探索氧与其它原子核空间相关方面的信息,成为研究催化剂相关作用的基础.本文综述了氧化物及相关催化剂17O固体核磁共振谱学研究的新进展.17O核磁共振谱学用于简单氧化物催化剂的结构研究,已经能够区分催化剂结构中不同晶相以及不同结晶学位点的氧物种,而1H→17O双共振实验也能用于选择表面羟基物种.对纳米氧化物结构的近期研究表明,17O核磁共振能将纳米氧化铈材料表面第1、2、3层、表面羟基、与氧空位靠近的氧物种与"体相"氧物种区分开来;此外借助17O-水和纳米氧化物作用,实现表面选择标记,为进一步探索催化剂结构和催化机理提供了新的可能.对于复合氧化物和负载催化剂,17O核磁共振谱学能够有效研究与催化性能最为相关的界面结构.在重要的氧化物催化材料沸石的研究中,17O核磁共振也发挥了巨大作用.借助高分辨率17O核磁共振方法,能够区分沸石中Si-O-Si和Si-O-Al物种,在一部分沸石中还能将不同结晶学位置的T-O-T'物种区分开来,并观测到天然沸石中违反Lowenstein规则,出现Al-O-Al物种的情况.借助双共振实验能够对与催化活性最为相关的B酸位Si-O(H)-Al结构和酸性进行研究,这一方法与探针分子相结合,已经能够对沸石和小分子的相互作用进行研究,提供吸附过程的重要信息.包括杂多酸和层状双氢氧化物在内的重要含氧催化材料也能够借助17O固体核磁共振进行局域结构和相互作用的研究.随着表面选择标记和动态核极化等选择表面研究的17O核磁共振技术的发展,我们能实现更为高效的表面结构的17O核磁共振观测,这一谱学方法将提供更多有关含氧催化剂和外来物种相互作用的信息,为研究氧化物催化剂及其催化应用提供新的策略.

References

[1]  Mizuno N, Misono M. Chem Rev, 1998, 98: 199
[2]  Lee K Y, Oishi S, Igarashi H, Misono M. Catal Today, 1997, 33: 183
[3]  Pope M T. Heteropoly and Isopoly Oxometalates. Berlin: Springer Verlag, 1983
[4]  Song I K, Barteau M A. J Mol Catal A, 2004, 212: 229
[5]  Keggin J F. Proc Roy Soc A, 1934, 144: 75
[6]  Kozhevnikov I V, Sinnema A, Jansen R J J, van Bekkum H. Catal Lett, 1994, 27: 187
[7]  Kozhevnikov I, Sinnema A, van Bekkum H. Catal Lett, 1995, 34: 213
[8]  Uchida S, Inumaru K, Misono M. J Phys Chem B, 2000, 104: 8108
[9]  Lee K Y, Mizuno N, Okuhara T, Misono M. Bull Chem Soc Jpn, 1989, 62: 1731
[10]  Taketa H, Katsuki S, Eguchi K, Seiyama T, Yamazoe N. J Phys Chem, 1986, 90: 2959
[11]  Andrew E R, Bradbury A, Eades R G. Nature, 1958, 182: 1659
[12]  Schramm S, Kirkpatrick R J, Oldfield E. J Am Chem Soc, 1983, 105: 2483
[13]  Schramm S, Oldfield E. J Am Chem Soc, 1984, 106: 2502
[14]  Yang S, Park K D, Oldfield E. J Am Chem Soc, 1989, 111: 7278
[15]  Timken H K C, Turner G L, Gilson J P, Welsh L, Oldfield E. J Am Chem Soc, 1986, 108: 7231
[16]  Timken H K C, Janes N, Turner G L, Lambert S L, Welsh L B, Oldfield E. J Am Chem Soc, 1986, 108: 7236
[17]  Chmelka B F, Mueller K T, Pines A, Stebbins J, Wu Y, Zwanziger J W. Nature, 1989, 339: 42
[18]  Frydman L, Harwood J S. J Am Chem Soc, 1995, 117: 5367
[19]  Gan Z H. J Am Chem Soc, 2000, 122: 3242
[20]  Pines A, Gibby M G, Waugh J S. J Chem Phys, 1973, 59: 569
[21]  Gullion T, Schaefer J. J Magn Reson, 1989, 81: 196
[22]  Ashbrook S E, Smith M E. Chem Soc Rev, 2006, 35: 718
[23]  Bonhomme C, Coelho C, Baccile N, Gervais C, Aza?s T, Babonneau F. Acc Chem Res, 2007, 40: 738
[24]  Mishakov I V, Bedilo A F, Richards R M, Chesnokov V V, Volodin A M, Zaikovskii V I, Buyanov R A, Klabunde K J. J Catal, 2002, 206: 40
[25]  Xu B Q, Wei J M, Wang H Y, Sun K Q, Zhu Q M. Catal Today, 2001, 68: 217
[26]  Pechenkin A A, Badmaev S D, Belyaev V D, Sobyanin V A. Appl Catal B, 2015, 166-167: 535
[27]  Gavril D. Catal Today, 2015, 244: 36
[28]  Fiske P S, Stebbins J F, Farnan I. Phys Chem Minerals, 1994, 20: 587
[29]  Chadwick A V, Poplett I J F, Maitland D T S, Smith M E. Chem Mater, 1998, 10: 864
[30]  Blanc F, Sperrin L, Jefferson D A, Pawsey S, Rosay M, Grey C P. J Am Chem Soc, 2013, 135: 2975
[31]  Walter T H, Oldfield E. J Phys Chem, 1989, 93: 6744
[32]  Wang X F, Han X W, Huang Y N, Sun J M, Xu S C, Bao X H. J Phys Chem C, 2012, 116: 25846
[33]  Niu X Y, Zhao T Y, Yuan F L, Zhu Y J. Sci Rep, 2015, 5: 9153
[34]  Li H X, Wang W J, Li H, Deng J F. J Catal, 2000, 194: 211
[35]  Chen Y Y, Wang C, Liu H Y, Qiu J S, Bao X H. Chem Commun, 2005: 5298
[36]  Grandinetti P J, Baltisberger J H, Farnan I, Stebbins J F, Werner U, Pines A. J Phys Chem, 1995, 99: 12341
[37]  van Eck E R H, Smith M E, Kohn S C. Solid State Nucl Magn Reson, 1999, 15: 181
[38]  Watson S, Beydoun D, Scott J, Amal R. J Nanopart Res, 2004, 6: 193
[39]  Oldfield E, Coretsopoulos C, Yang S T, Reven L, Lee H C, Shore J, Han O H, Ramli E, Hinks D. Phys Rev B, 1989, 40: 6832
[40]  Bastow T J, Doran G, Whitfield H J. Chem Mater, 2000, 12: 436
[41]  Bastow T J, Moodie A F, Smith M E, Whitfield H J. J Mater Chem, 1993, 3: 697
[42]  Bastow T J, Stuart S N. Chem Phys, 1990, 143: 459
[43]  Blanchard J, Bonhomme C, Maquet J, Sanchez C. J Mater Chem, 1998, 8: 985
[44]  Scolan E, Magnenet C, Massiot D, Sanchez C. J Mater Chem, 1999, 9: 2467
[45]  Wang M, Wu X P, Zheng S J, Zhao L, Li L, Shen L, Gao Y X, Xue N H, Guo X F, Huang W X, Gan Z H, Blanc F, Yu Z W, Ke X K, Ding W P, Gong X Q, Grey C P, Peng L M. Sci Adv, 2015, 1: e1400133
[46]  Holland M A, Pickup D M, Mountjoy G, Tsang E S C, Wallidge G W, Newport R J, Smith M E. J Mater Chem, 2000, 10: 2495
[47]  Pickup D M, Mountjoy G, Wallidge G W, Newport R J, Smith M E. Phys Chem Chem Phys, 1999, 1: 2527
[48]  Gunawidjaja P N, Holland M A, Mountjoy G, Pickup D M, Newport R J, Smith M E. Solid State Nucl Magn Reson, 2003, 23: 88
[49]  Pickup D M, Mountjoy G, Holland M A, Wallidge G W, Newport R J, Smith M E. J Mater Chem, 2000, 10: 1887
[50]  Besselink R, Venkatachalam S, van Wüllen L, ten Elshof J E. J Sol-Gel Sci Technol, 2014, 70: 473
[51]  Drake K O, Carta D, Skipper L J, Sowrey F E, Newport R J, Smith M E. Solid State Nucl Magn Reson, 2005, 27: 28
[52]  Merle N, Trébosc J, Baudouin A, Rosal I D, Maron L, Szeto K, Genelot M, Mortreux A, Taoufik M, Delevoye L, Gauvin R M. J Am Chem Soc, 2012, 134: 9263
[53]  Klug C A, Kroeker S, Aguiar P M, Zhou M, Stec D F, Wachs I E. Chem Mater, 2009, 21: 4127
[54]  Bull L M, Cheetham A K. Stud Surf Sci Catal, 1997, 105: 471
[55]  Amoureux J P, Bauer F, Ernst H, Fernandez C, Freude D, Michel D, Pingel U T. Chem Phys Lett, 1998, 285: 10
[56]  Freude D, Loeser T, Michel D, Pingel U, Prochnow D. Solid State Nucl Magn Reson, 2001, 20: 46
[57]  Loeser T, Freude D, Mabande G T P, Schwieger W. Chem Phys Lett, 2003, 370: 32
[58]  Neuhoff P S, Zhao P D, Stebbins J F. Microporous Mesoporous Mater, 2002, 55: 239
[59]  Pingel U T, Amoureux J P, Anupold T, Bauer F, Ernst H, Fernandez C, Freude D, Samoson A. Chem Phys Lett, 1998, 294: 345
[60]  Stebbins J F, Zhao P D, Lee S K, Cheng X. Am Mineral, 1999, 84: 1680
[61]  Schneider D, Toufar H, Samoson A, Freude D. Solid State Nucl Magn Reson, 2009, 35: 87
[62]  Bull L M, Cheetham A K, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R. J Am Chem Soc, 1998, 120: 3510
[63]  Bull L M, Bussemer B, Anupold T, Reinhold A, Samoson A, Sauer J, Cheetham A K, Dupree R. J Am Chem Soc, 2000, 122: 4948
[64]  Huo H, Peng L M, Grey C P. Stud Surf Sci Catal, 2007, 170: 783
[65]  Huo H, Peng L M, Gan Z H, Grey C P. J Am Chem Soc, 2012, 134: 9708
[66]  Huo H, Peng L M, Grey C P. J Phys Chem C, 2011, 115: 2030
[67]  Peng L M, Liu Y, Kim N, Readman J E, Grey C P. Nat Mater, 2005, 4: 216
[68]  Peng L M, Huo H, Liu Y, Grey C P. J Am Chem Soc, 2007, 129: 335
[69]  Peng L M, Huo H, Gan Z H, Grey C P. Microporous Mesoporous Mater, 2008, 109: 156
[70]  Readman J E, Kim N, Ziliox M, Grey C P. Chem Commun, 2002: 2808
[71]  Readman J E, Grey C P, Ziliox M, Bull L M, Samoson A. Solid State Nucl Magn Reson, 2004, 26: 153
[72]  Farnan I, Grandinetti P J, Baltisberger J H, Stebbins J F, Werner U, Eastman M A, Pines A. Nature, 1992, 358: 31
[73]  Xue X, Kanzaki M. Phys Chem Minerals, 1998, 26: 14
[74]  Liu Y, Nekvasil H, Tossell J. J Phys Chem A, 2005, 109: 3060
[75]  Clark T M, Grandinetti P J. Solid State Nucl Magn Reson, 2005, 27: 233
[76]  Clark T M, Grandinetti P J. J Phys: Condens Matter, 2003, 15: S2387
[77]  Vermillion K E, Florian P, Grandinetti P J. J Chem Phys, 1998, 108: 7274
[78]  Profeta M, Mauri F, Pickard C J. J Am Chem Soc, 2003, 125: 541
[79]  Larin A V, Sakodynskaya I K, Trubnikov D N. J Comput Chem, 2008, 29: 2344
[80]  Griffin J M, Clark L, Seymour V R, Aldous D W, Dawson D M, Iuga D, Morris R E, Ashbrook S E. Chem Sci, 2012, 3: 2293
[81]  Chen B H, Huang Y N. J Am Chem Soc, 2006, 128: 6437
[82]  Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430: 1012
[83]  Hunger M. Solid State Nucl Magn Reson, 1996, 6: 1
[84]  Lunsford J H, Rothwell W P, Shen W X. J Am Chem Soc, 1985, 107: 1540
[85]  Haw J F, Xu T, Nicholas J B, Goguen P W. Nature, 1997, 389: 832
[86]  Xue X Y, Kanzaki M. J Phys Chem B, 2001, 105: 3422
[87]  Bardin B B, Bordawekar S V, Neurock M, Davis R J. J Phys Chem B, 1998, 102: 10817
[88]  Ganapathy S, Fournier M, Paul J F, Delevoye L, Guelton M, Amoureux J P. J Am Chem Soc, 2002, 124: 7821
[89]  Wang W, Wang S P, Ma X B, Gong J L. Chem Soc Rev, 2011, 40: 3703
[90]  Wang Q, Luo J Z, Zhong Z Y, Borgna A. Energy Environ Sci, 2011, 4: 42
[91]  Wang Q, Tay H H, Zhong Z Y, Luo J Z, Borgna A. Energy Environ Sci, 2012, 5: 7526
[92]  Sideris P J, Nielsen U G, Gan Z H, Grey C P. Science, 2008, 321: 113
[93]  Sideris P J, Blanc F, Gan Z H, Grey C P. Chem Mater, 2012, 24: 2449
[94]  Petersen L B, Lipton A S, Zorin V, Nielsen U G. J Solid State Chem, 2014, 219: 242
[95]  Cadars S, Layrac G, Gérardin C, Deschamps M, Yates J R, Tichit D, Massiot D. Chem Mater, 2011, 23: 2821
[96]  Zhao L, Qi Z, Blanc F, Yu G Y, Wang M, Xue N H, Ke X K, Guo X F, Ding W P, Grey C P, Peng L M. Adv Funct Mater, 2014, 24: 1696
[97]  Sahoo P, Ishihara S, Yamada K, Deguchi K, Ohki S, Tansho M, Shimizu T, Eisaku N, Sasai R, Labuta J, Ishikawa D, Hill J P, Ariga K, Bastakoti B P, Yamauchi Yusuke, Iyi N. ACS Appl Mater Inter, 2014, 6: 18352
[98]  Zhou H C, Long J R, Yaghi O M. Chem Rev, 2012, 112: 673
[99]  Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem Eur J, 2004, 10: 1373
[100]  Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J Am Chem Soc, 2008, 130: 13850
[101]  Dietzel P D C, Blom R, Fjellv?g H. Eur J Inorg Chem, 2008: 3624
[102]  Müller M, Hermes S, K?hler K, van den Berg M W E, Muhler M, Fischer R A. Chem Mater, 2008, 20: 4576
[103]  He P, Xu J, Terskikh V V, Sutrisno A, Nie H Y, Huang Y N. J Phys Chem C, 2013, 117: 16953
[104]  Wang W D, Lucier B E G, Terskikh V V, Wang W, Huang Y N. J Phys Chem Lett, 2014, 5: 3360
[105]  Kong X Q, Terskikh V V, Khade R L, Yang L, Rorick A, Zhang Y, He P, Huang Y N, Wu G. Angew Chem Int Ed, 2015, 54: 4753

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133