全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

一种结合均相和非均相催化剂优势的聚乙炔纳米颗粒负载的钯(Ⅱ)催化剂

DOI: 10.1016/S1872-2067(15)60930-5, PP. 1560-1572

Keywords: Suzuki偶联,乙炔,钯配合物,水性反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

?负载型的金属催化剂虽然分离方便,但在反应活性、选择性以及催化剂的结构表征方面均明显不如相应的均相催化剂.将均相催化剂通过不同的化学键固载于高比表面积载体是实现均相催化剂多相化的重要途径,这样可使催化剂兼具均相和多相催化剂的优势.然而要将均相催化剂锚定于特定载体上,通常涉及较为复杂的合成反应,对载体也有严格的要求.因而该法仅仅适用于实验室研究,难以实现规模生产.因此,提供一种简便有效地制备兼具均相和多相催化剂优势的催化剂合成方法非常必要.本文报道一种简便的制备聚乙炔纳米颗粒负载Pd(Ⅱ)催化剂(NP-Pd(Ⅱ))的方法,所制催化剂在水相中的Suzuki-Miyaura偶联反应中表现出极高的活性,同时具有便于分离、容易放大制备的特点.在室温下,将乙炔气通入PdCl42-的水溶液中迅速变得浑浊,静置后容器底部有棕色沉淀,同时溶液变为无色透明.固体产物使用水、乙醇等溶剂进行洗涤;干燥之后收集既得聚乙炔纳米颗粒负载的Pd(Ⅱ)催化剂NP-Pd(Ⅱ).使用透射电子显微镜、红外(IR)及拉曼吸收光谱、X射线衍射(XRD)、X射线光电子能谱(XPS)以及X射线吸收光谱(EXAFS)等手段对NP-Pd(Ⅱ)进行了详细表征.结果显示,在NP-Pd(Ⅱ)中Pd并非以Pd纳米颗粒形式存在;XRD中没有未Pd纳米晶的特征衍射峰.IR等表征证明乙炔在Pd的催化作用下发生聚合作用,生成了聚乙炔.EXAFS结果表明,Pd分别和氯原子以及C=C双键进行配位;同时,没有观察到Pd-Pd键的生成,进一步证明了Pd未被还原为Pd纳米颗粒.XPS也印证了Pd(Ⅱ)的价态.形貌上,NP-Pd(Ⅱ)为直径2-3nm的颗粒,其中的Pd原子均匀分散于聚乙炔纳米颗粒上,使其在反应过程中能够充分地与底物接触,从而在Suzuki-Miyaura偶联反应中表现出极高的活性.更重要的是,由于"憎水效应",NP-Pd(Ⅱ)在溶液中以微米级的聚集体形式存在,因而反应后通过离心或者静置从反应体系中分离出来.因此,在NP-Pd(Ⅱ)催化剂中,每个Pd原子都是潜在的活性中心,这与典型的均相催化剂相似;同时,其独特的形貌使其具备了多相催化剂便于分离的特点.因此,NP-Pd(Ⅱ)是一种兼具均相和多相催化剂优点的催化剂且其催化剂的制备方法极为简便.乙炔是常用的工业气体,溶剂采用水,制备在室温下即可完成,我们也成功地制备出克级规模的高活性、稳定性的NP-Pd(Ⅱ)催化剂.

References

[1]  Wijngaarden R I, Westerterp K R, Kronberg A, Bos A. Industrial catalysis: Optimizing Catalysts and Processes. Weiheim: Wiley, 2008
[2]  Bhaduri S, Mukesh D. Homogeneous Catalysis: Mechanism and Industrial Applications. Weiheim: Wiley, 2000
[3]  Van Leeuwen P W N M, Leeuwen P W. Homogeneous Catalysis: Understanding the Art. New York: Springer, 2005
[4]  Trost B M. Angew Chem Int Ed, 1995, 34: 259
[5]  Behr A, Neubert P. Applied Homogeneous Catalysis. Weiheim: Wiley, 2012
[6]  Cole-Hamilton D J. Science, 2003, 299: 1702
[7]  Ertl G, Knozinger H, Schuth F, Weitkamp J. Handbook of Heterogeneous Catalysis. Weiheim: Wiley, 2008
[8]  Molnar A. Chem Rev, 2011, 111: 2251
[9]  Polshettiwar V, Len C, Fihri A. Coord Chem Rev, 2009, 253: 2599
[10]  Lu J, Toy P H. Chem Rev, 2009, 109: 815
[11]  McMorn P, Hutchings G J. Chem Soc Rev, 2004, 33: 108
[12]  Collis A E, Horvath I T. Catal Sci Technol, 2011, 1: 912
[13]  Phan N T S, Van Der Sluys M, Jones C W. Adv Synth Catal, 2006, 348: 609
[14]  Pagliaro M, Pandarus V, Ciriminna R, Beland F, Demma Carà P. ChemCatChem, 2012, 4: 432
[15]  Johansson Seechurn C C, Kitching M O, Colacot T J, Snieckus V. Angew Chem Int Ed, 2012, 51: 5062
[16]  Miyaura N. Top Curr Chem, 2002, 219: 11
[17]  Suzuki A. J Organomet Chem, 1999, 576: 147
[18]  Nicolaou K C, Bulger P G, Sarlah D. Angew Chem Int Ed, 2005, 44: 4442
[19]  Miyaura N, Suzuki A. Chem Rev, 1995, 95: 2457
[20]  Magano J, Dunetz J R. Chem Rev, 2011, 111: 2177
[21]  Kambe N, Iwasaki T, Terao J. Chem Soc Rev, 2011, 40: 4937
[22]  Littke A F, Fu G C. Angew Chem Int Ed, 1998, 37: 3387
[23]  Surry D S, Buchwald S L. Chem Sci, 2011, 2: 27
[24]  Wu X F, Neumann H, Beller M. ChemSusChem, 2013, 6: 229
[25]  B?hm V P W, Gst?ttmayr C W K, Weskamp T, Herrmann W A. J Organomet Chem, 2000, 595: 186
[26]  Marion N, Nolan S P. Acc Chem Res, 2008, 41: 1440
[27]  Valente C, Calimsiz S, Hoi K H, Mallik D, Sayah M, Organ M G. Angew Chem Int Ed, 2012, 51: 3314
[28]  Nájera C, Gil-Moltó J, Karlstr?m S, Falvello L R. Org Lett, 2003, 5: 1451
[29]  Buchmeiser M R, Wurst K. J Am Chem Soc, 1999, 121: 11101
[30]  Beletskaya I P, Cheprakov A V. J Organomet Chem, 2004, 689: 4055
[31]  Kim K S, Gossmann A F, Winograd N. Anal Chem, 1974, 46: 197
[32]  Kumar G, Blackburn J R, Albridge R G, Moddeman W E, Jones M M. Inorg Chem, 1972, 11: 296
[33]  Wang X F, Andrews L. J Phys Chem A, 2003, 107: 337
[34]  Maitlis P M. Acc Chem Res, 1976, 9: 93
[35]  Abraham R, Mobli M. Modelling 1H NMR Spectra of Organic Compounds. Weinheim: Wiley, 2008
[36]  Elding L. Inorg Chim Acta, 1972, 6: 647
[37]  Lichtmann L S, Imhoff E A, Sarhangi A, Fitchen D B. J Chem Phys, 1984, 81: 168
[38]  McIntire M, Zhao L, Kobryanskii V, Chronister E. J Raman Spectrosc, 2011, 42: 1435
[39]  Grogan M J, Nakamoto K. J Am Chem Soc, 1968, 90: 918
[40]  Cooper D G, Powell J. Inorg Chem, 1976, 15: 1959
[41]  Bernard G M, Wasylishen R E, Phillips A D. J Phys Chem A, 2000, 104: 8131
[42]  Bennett M A. Chem Rev, 1962, 62: 611
[43]  Jain V K, Jain L. Coord Chem Rev, 2005, 249: 3075
[44]  Hartley F R. Chem Rev, 1969, 69: 799
[45]  Sobczak J W, Sobczak E, Lesiak B, Palczewska W, Kosinski A. J Alloy Compd, 1999, 286: 98
[46]  Negishi E I, De Meijene A. Handbook of Organopalladium Chemistry for Organic Synthesis. Weinheim: Wiley, 2002
[47]  Fairlamb I J S. Org Biomol Chem, 2008, 6: 3645
[48]  Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J Am Chem Soc, 2009, 131: 8262
[49]  Lamblin M, Nassar-Hardy L, Hierso J C, Fouquet E, Felpin F X. Adv Synth Catal, 2010, 352: 33
[50]  Polshettiwar V, Decottignies A, Len C, Fihri A. ChemSusChem, 2010, 3: 502
[51]  Badone D, Baroni M, Cardamone R, Ielmini A, Guzzi U. J Org Chem, 1997, 62: 7170
[52]  Uozumi Y, Nakai Y. Org Lett, 2002, 4: 2997
[53]  Ganesamoorthy S, Shanmugasundaram K, Karvembu R. J Mol Catal A, 2013, 371: 118
[54]  Liu C, Zhang Y X, Liu N, Qiu J S. Green Chem, 2012, 14: 2999
[55]  Leadbeater N E. Chem Commun, 2005: 2881

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133