Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH. Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b[J]. Hortscience, 2009, 44(1): 35-39.
[8]
Tillett LR, Wheatley MD, Tattersall EAR, Schlauch KA, Cramer GR, Cushman JC. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape[J]. Plant Biotechnology J, 2012, 10(1): 105-124.
[9]
Zhang JZ, Creelman RA, Zhu JK. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops[J]. Plant Physiol, 2004, 135(2): 615-621.
[10]
Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants[J]. Crit Rev Biotechnol, 2011, 31(2): 186-92.
[11]
Xiao H, Siddiqua M, Braybrook S, Nassuth A. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid[J]. Plant Cell Environ, 2006, 29(7): 1410-1421.
[12]
Xiao H, Tattersall EA, Siddiqua MK, Cramer GR, Nassuth A. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia[J]. Plant Cell Environ, 2008, 31(1): 1-10.
[13]
Li JT, Wang LN, Zhu W, Wang N, Xin HP, Li SH. Characterization of two VvICE1 genes isolated from ‘Muscat Hamburg’ grapevine and their effect on the tolerance to abiotic stresses[J]. Sci Hortic, 2014a, 165(22): 266-273.
[14]
Li JT, Wang N, Wang LN, Xin HP, Li SH. Molecular cloning and characterization of the HOS1 gene from ‘Muscat Hamburg’ grapevine[J]. J Am Soc Hortic Sci, 2014b, 139(1): 54-62.
[15]
Liu LY, Li H. Research progress in amur grape, Vitis amurensis Rupr.[J]. Can J Plant Sci, 2013, 93(4): 565-575.
[16]
Dong C, Tao JM, Zhang M, Qin Y, Yu ZY, Wang BL, Cai BH, Zhang Z. Isolation and expression characterization of CBF2 in Vitis amurensis with stress[J]. Agr Sci, 2013a, 4(9): 466-472.
[17]
Dong C, Zhang M, Yu ZY, Ren JP, Qin Y, Wang BL, Xiao LZ, Zhang Z, Tao JM. Isolation and expression analysis of CBF4 from Vitis amurensis associated with stress[J]. Agr Sci, 2013b, 4(5): 224-229.
[18]
Dong C, Zhang Z, Qin Y, Ren JP, Huang JF, Wang BL, Lu HL, Cai BH, Tao JM. VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance[J]. Acta Physiol Plant, 2013c, 35(10): 2975-2984.
[19]
Dong C, Zhang Z, Ren JP, Qin Y, Huang JF, Wang Y, Cai BH, Wang BL, Tao JM. Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco[J]. Plant Physiol Bioch, 2013d, 71(2013): 212-217.
[20]
Li JT, Wang N, Xin HP, Li SH. Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis[J]. Plant Mol Biol Rep, 2013, 31(6): 1518-1528.
[21]
Mikkelsen MD, Thomashow MF. A role for circa-dian evening elements in cold-regulated gene expression in Arabidopsis[J]. Plant J, 2009, 60(2): 328-339.
[22]
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D''Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses[J]. Plant J, 2007, 50(2): 347-363.
[23]
Xin HP, Zhu W, Wang LN, Xiang Y, Fang LC, Li JT, Sun XM, Wang N, Londo J, Li SH. Genome wide transcriptional profile analysis of Vitis amurensis and V. vinifera in response to cold stress[J]. PLoS One, 2013, 8(3): e58740.
[24]
Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress[J]. Plant Mol Biol, 2014, 86(4-5): 527-541.