全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

极性生长的细胞中胞嘧啶甲基化的动态变化及其对GABA信号的响应

DOI: 10.11913/PSJ.2095-0837.2015.40521, PP. 521-527

Keywords: &gamma,-氨基丁酸(GABA),DNA甲基化,5-甲基胞嘧啶(5mC),5-羟基胞嘧啶(5hmC)

Full-Text   Cite this paper   Add to My Lib

Abstract:

?DNA胞嘧啶(C)的甲基化(5mC)在植物发育过程中具有重要的调节作用,多种环境因子如逆境胁迫、植物内/外源性因子等均会触发DNA甲基化的变化。为探讨γ-氨基丁酸(GABA)对植物发育的可能调节机制,本研究以极性生长的烟草花粉管和拟南芥根为材料,分析5mC的含量及其对GABA信号的响应。结果表明,1.0mmol/LGABA能显著促进烟草花粉管和拟南芥根的极性生长;同时,GABA处理使烟草花粉管和拟南芥根的基因组中5mC含量显著降低、5-羟基胞嘧啶(5hmC)含量显著增加。5hmC是5mC去甲基化途径中的一个重要中间产物,本研究证实了GABA可以作为一种重要的外源信号调节DNA甲基化的动态变化。

References

[1]  Maiti A, Michelson AZ, Armwood CJ, Lee JK, Drohat AC. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA[J].J Am Chem Soc, 2013, 135(42): 15813-15822.
[2]  Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division[J].Cell Stem Cell, 2013, 13(3): 265-269.
[3]  Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals[J].Cell, 2014, 157(4): 979-991.
[4]  Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction[J].Nat Rev Genet, 2014, 15(9): 613-624.
[5]  汪艳杰, 龙鸿, 姚家玲. 亚硫酸氢钠测序法检测水稻FIE基因CpG岛甲基化状态[J].植物科学学报, 2011, 29(1): 134-139.
[6]  邓莹, 高乐旋, 朱珠, 杨继. 不同水陆环境中喜旱莲子草甲基化调控因子表达水平和差异表达基因启动子区甲基化状态分析[J].植物科学学报, 2014, 32(5): 475-486.
[7]  Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses[J].Plant Cell Environ, 2010, 33(4): 604-611.
[8]  Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003, 33(Suppl): 245-254.
[9]  Eichten SR, Schmitz RJ, Springer NM. Epigene-tics: beyond chromatin modifications and complex genetic regulation[J].Plant Physiol, 2014, 165(3): 933-947.
[10]  Bouché N, Fromm H. GABA in plants: just a metabolite?[J].Trends Plant Sci, 2004, 9(3): 110-115.
[11]  Yu GH, Liang JG, He ZK, Sun MX. Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco[J].Chem Biol, 2006, 13(7): 723-731.
[12]  马兆武, 杨旭红, 余光辉. γ-氨基丁酸对烟草MAPK和ACS1基因表达的分叉调节[J].武汉植物学研究, 2008, 26(5): 520-523.
[13]  Liu CL, Zhao L, Yu GH. The dominant glutamic acid metabolic flux to produce γ-aminobutyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity[J].J Integr Plant Biol, 2011, 53(8): 608-618.
[14]  张瑞琦, 赵丽, 覃永华, 徐鑫, 余光辉. γ-氨基丁酸促进拟南芥开花的机理研究[J].中国农学通报, 2012, 28(15): 142-147.
[15]  赵丽, 赵志龙, 龚汉雨, 覃永华, 余光辉. GABA对烟草花粉管Ca2+和K+的动态调节表明离子通道参与了花粉管生长的调控[J].中国细胞生物学报, 2013, 32(5): 668-675.
[16]  Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase[J].J Exp Bot, 2014, 65(12): 3235-3248.
[17]  Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010,11(3): 204-220.
[18]  Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation[J].Plant Cell Rep, 2013, 32(8): 1151-1159.
[19]  Slotkin RK, Vaughn M, Borges F, Tanurdzic'' M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J].Cell, 2009, 136(3): 461-472.
[20]  Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root[J].Science, 2003, 302(5652): 1956-1960.
[21]  Yu GH, Peng XB, Cheng G, Liu XQ, Wang CT, Sun MX. Specifically proteomic identification of differentially expressed proteins linking pollen tube growth with γ-aminobutyric acid responses in Nicotiana tabacum pollen proteomics[C]//21st IUBMB & 12th FAOBMB International Congress of Biochemistry and Molecular Biology. Shanghai, 2009: 116.
[22]  Yu GH, Zhao L, Xiang WH, Qin YH, Xu X. Whole-genome scale analysis of gene expression profiling of Arabidopsis flowering promotion in responding to γ-aminobutyric acid signals[C]//2012 International Symposium on Epigenetic Regulation in Higher Plants (2012 ISERHP). Beijing: 2012.
[23]  Tang Y, Xiong J, Jiang HP, Zheng SJ, Feng YQ, Yuan BF. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis[J].Anal Chem, 2014, 86(15): 7764-7772.
[24]  Brooks SC, Fischer RL, Huh JH, Eichman BF. 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3[J].Biochem, 2014, 53(15): 2525-2532.
[25]  Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Ullah I, Wang Y. Detection of oxidation products of 5-Methyl-29-Deoxycytidine in Arabidopsis DNA[J].PLoS One, 2013, 8(12): e84620.
[26]  Moricová P, Ondej V, Navrátilová B, Luhová L. Changes of DNA methylation and hydroxymethylation in plant protoplast cultures[J].Acta Biochim Pol, 2013, 60(1): 33-36.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133