Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed. 1. Introduction Plant breeding began as early as 10,000 BC during the Neolithic revolution, when tribes of hunter-gatherers started their shift towards a sedentary and agrarian society [1]. Domestication of crop plants seems to have taken place simultaneously in several subtropical regions, across central Africa, western South America, southeast Asia, and the Mediterranean during this period [2]. It is still a subject of discussion whether early attempts at domestication were consciously guided or random, although cave paintings at the Lascaux cave in France and Altamira in Spain as well as in other places show that early man was conscious of the life cycle and nature around him. The first experiments with plant breeding were most likely limited to selecting the most viable specimens from each harvest for subsequent sowing [3], which nevertheless had a profound impact on crop yield. This selection also altered the plants in new ways, since human selection was in practise often opposite to natural selection [4]. It was realised early, that domesticated plants were not to be considered “natural” and Charles Darwin coined the term “artificial selection” in 1859 to emphasise the difference between selection in nature and man-made selection [5]. He then further elaborated on the subject in a separate book published in 1868 [6]. Systematic selection has, over the years, now changed the domesticated plants to the point where the wild relatives of crop plants often are classified in completely different taxa. The greater yields from the domesticated crops, allowed for an increased human population density, formation of communities, and work specialization in areas other than food production within those communities. The move from foraging to agriculture also brought many negative
References
[1]
P. Gepts, “Origins of plant agriculture and major crop plants,” in OUR FRAGILE WORLD: Challenges and Opportunities for Sustainable Development, pp. 629–637, 2001.
[2]
P. Gepts, “A comparison between crop domestication, classical plant breeding, and genetic engineering,” Crop Science, vol. 42, no. 6, pp. 1780–1790, 2002.
[3]
L. T. Evans, Crop Evolution, Adaptation, and Yield, vol. 11, Cambridge University Press, New York, NY, USA, 1993.
[4]
G. C. Hillman and M. S. Davies, “Domestication rates in wild-type wheats and barley under primitive cultivation,” Biological Journal of the Linnean Society, vol. 39, no. 1, pp. 39–78, 1990.
[5]
C. Darwin, On the Origin of Species by Means of Natural Selection, vol. 9, J. Murray, London, UK, 1st edition, 1859.
[6]
C. Darwin, The Variation of Animals and Plants under Domestication, J. Murray, London, UK, 1868.
[7]
M. J. Chrispeels and D. E. Sadava, Plants, Genes, and Crop Biotechnology, vol. 24, Jones and Bartlett, Boston, Mass, USA, 2nd edition, 2003.
[8]
M. J. Balick, Plants, People, and Culture: The Science of Ethnobotany, vol. 9, Scientific American Library, New York, NY, USA, 1997.
[9]
J. Smartt and N. W. Simmonds, Evolution of Crop Plants, Longman Scientific and Technical, Harlow, UK; Wiley, New York, NY, USA, 2nd edition, 1995.
[10]
H. J. Muller, “Artificial transmutation of the gene,” Science, vol. 66, no. 1699, pp. 84–87, 1927.
[11]
L. J. Stadler, “Mutations in barley induced by X-rays and radium,” Science, vol. 68, no. 1756, pp. 186–187, 1928.
[12]
L. J. Stadler, “Genetic effects of X-Rays in Maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 14, no. 1, pp. 69–75, 1928.
[13]
C. Auerbach and J. M. Robson, “Chemical production of mutations,” Nature, vol. 157, no. 3984, p. 302, 1946.
[14]
C. Auerbach, “Chemical mutagenesis,” Biological reviews of the Cambridge Philosophical Society, vol. 24, no. 3, pp. 355–391, 1949.
[15]
M. Westergaard, “Chemical mutagenesis in relation to the concept of the gene,” Experientia, vol. 13, no. 6, pp. 224–234, 1957.
[16]
H. Leung, C. Wu, M. Baraoidan, et al., “Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development,” in Rice Genetics, D. Brar, B. Hardy, and G. Khush, Eds., vol. 4, pp. 239–251, International Rice Research Institute, 2001.
[17]
J. L. Wu, C. Wu, C. Lei et al., “Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics,” Plant Molecular Biology, vol. 59, no. 1, pp. 85–97, 2005.
[18]
B. J. Till, J. Cooper, T. H. Tai et al., “Discovery of chemically induced mutations in rice by TILLING,” BMC Plant Biology, vol. 7, article 19, 2007.
[19]
B. J. Till, S. H. Reynolds, C. Weil et al., “Discovery of induced point mutations in maize genes by TILLING,” BMC Plant Biology, vol. 4, article 12, 2004.
T. Wang, C. Uauy, B. Till, and C.-M. Liu, “TILLING and associated technologies,” Journal of Integrative Plant Biology, vol. 52, no. 11, pp. 1027–1030, 2010.
[22]
A. Chawade, P. Sikora, M. Br?utigam et al., “Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes,” BMC Plant Biology, vol. 10, p. 86, 2010.
[23]
D. G. Caldwell, N. McCallum, P. Shaw, G. J. Muehlbauer, D. F. Marshall, and R. Waugh, “A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.),” Plant Journal, vol. 40, no. 1, pp. 143–150, 2004.
[24]
C. M. McCallum, L. Comai, E. A. Greene, and S. Henikoff, “Targeted screening for induced mutations,” Nature Biotechnology, vol. 18, no. 4, pp. 455–457, 2000.
[25]
T. Colbert, B. J. Till, R. Tompa et al., “High-throughput screening for induced point mutations,” Plant Physiology, vol. 126, no. 2, pp. 480–484, 2001.
[26]
J. A. Perry, T. L. Wang, T. J. Welham et al., “A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus,” Plant Physiology, vol. 131, no. 3, pp. 866–871, 2003.
[27]
J. Perry, A. Brachmann, T. Welham et al., “TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements,” Plant Physiology, vol. 151, no. 3, pp. 1281–1291, 2009.
[28]
B. J. Till, S. H. Reynolds, E. A. Greene et al., “Large-scale discovery of induced point mutations with high-throughput TILLING,” Genome Research, vol. 13, no. 3, pp. 524–530, 2003.
[29]
A. J. Slade, S. I. Fuerstenberg, D. Loeffler, M. N. Steine, and D. Facciotti, “A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING,” Nature Biotechnology, vol. 23, no. 1, pp. 75–81, 2005.
[30]
K. Triques, B. Sturbois, S. Gallais et al., “Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea,” Plant Journal, vol. 51, no. 6, pp. 1116–1125, 2007.
[31]
J. L. Cooper, B. J. Till, R. G. Laport et al., “TILLING to detect induced mutations in soybean,” BMC Plant Biology, vol. 8, article 9, 2008.
[32]
T. Suzuki, M. Eiguchi, T. Kumamaru et al., “MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice,” Molecular Genetics and Genomics, vol. 279, no. 3, pp. 213–223, 2008.
[33]
V. Talamè, R. Bovina, M. C. Sanguineti, R. Tuberosa, U. Lundqvist, and S. Salvi, “TILLMore, a resource for the discovery of chemically induced mutants in barley,” Plant Biotechnology Journal, vol. 6, no. 5, pp. 477–485, 2008.
[34]
N. Wang, Y. Wang, F. Tian et al., “A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING,” New Phytologist, vol. 180, no. 4, pp. 751–765, 2008.
[35]
Z. Xin, M. Li Wang, N. A. Barkley et al., “Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population,” BMC Plant Biology, vol. 8, article 103, 2008.
[36]
C. Dong, C. Dalton-Morgan, K. Vincent, and P. Sharp, “A modified TILLING method for wheat breeding,” Plant Genetic, vol. 2, no. 1, pp. 39–47, 2009.
[37]
A. L. F. Gady, F. W. K. Hermans, M. H. B. J. Van De Wal, E. N. Van Loo, R. G. F. Visser, and C. W. B. Bachem, “Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations,” Plant Methods, vol. 5, no. 1, article no. 13, 2009.
[38]
S. Gottwald, P. Bauer, T. Komatsuda, U. Lundqvist, and N. Stein, “TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1,” BMC Research Notes, vol. 2, article 258, 2009.
[39]
E. Himelblau, E. J. Gilchrist, K. Buono et al., “Forward and reverse genetics of rapid-cycling Brassica oleracea,” Theoretical and Applied Genetics, vol. 118, no. 5, pp. 953–961, 2009.
[40]
C. Le Signor, V. Savois, G. Aubert et al., “Optimizing TILLING populations for reverse genetics in Medicago truncatula,” Plant Biotechnology Journal, vol. 7, no. 5, pp. 430–441, 2009.
[41]
B. Martín, M. Ramiro, J. M. Martínez-Zapater, and C. Alonso-Blanco, “A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis,” BMC Plant Biology, vol. 9, article 147, 2009.
[42]
C. Uauy, F. Paraiso, P. Colasuonno et al., “A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat,” BMC Plant Biology, vol. 9, article 115, 2009.
[43]
S. M. Bush and P. J. Krysan, “iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis,” Plant Physiology, vol. 154, no. 1, pp. 25–35, 2010.
[44]
F. Dahmani-Mardas, C. Troadec, A. Boualem, et al., “Engineering melon plants with improved fruit shelf life using the TILLING approach,” PLoS One, vol. 5, no. 12, article e15776, 2010.
[45]
M. Dalmais, J. Schmidt, C. Le Signor et al., “UTILLdb, a Pisum sativum in silico forward and reverse genetics tool,” Genome Biology, vol. 9, no. 2, article R43, 2008.
[46]
S. Minoia, A. Petrozza, O. D'Onofrio et al., “A new mutant genetic resource for tomato crop improvement by TILLING technology,” BMC Research Notes, vol. 3, article no. 69, 2010.
[47]
F. Sestili, E. Botticella, Z. Bedo, A. Phillips, and D. Lafiandra, “Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis,” Molecular Breeding, vol. 25, no. 1, pp. 145–154, 2010.
[48]
P. Stephenson, D. Baker, T. Girin et al., “A rich TILLING resource for studying gene function in Brassica rapa,” BMC Plant Biology, p. 10, article 62, 2010.
[49]
J. E. Knoll, M. L. Ramos, Y. Zeng, et al., “TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.),” BMC Plant Biology, vol. 11, article 81, 2011.
[50]
W. Sabetta, V. Alba, A. Blanco, and C. Montemurro, “SunTILL: a TILLING resource for gene function analysis in sunflower,” Plant Methods, vol. 7, no. 1, p. 20, 2011.
[51]
S. Winkler, A. Schwabedissen, D. Backasch et al., “Target-selected mutant screen by TILLING in Drosophila,” Genome Research, vol. 15, no. 5, pp. 718–723, 2005.
[52]
B. J. Till, T. Zerr, L. Comai, and S. Henikoff, “A protocol for TILLING and Ecotilling in plants and animals,” Nature Protocols, vol. 1, no. 5, pp. 2465–2477, 2006.
[53]
C. Raghavan, M. E. B. Naredo, H. Wang et al., “Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping,” Molecular Breeding, vol. 19, no. 2, pp. 87–101, 2007.
[54]
C. N. Gundry, J. G. Vandersteen, G. H. Reed, R. J. Pryor, J. Chen, and C. T. Wittwer, “Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes,” Clinical Chemistry, vol. 49, no. 3, pp. 396–406, 2003.
[55]
C. T. Wittwer, G. H. Reed, C. N. Gundry, J. G. Vandersteen, and R. J. Pryor, “High-resolution genotyping by amplicon melting analysis using LCGreen,” Clinical Chemistry, vol. 49, no. 6, part 1, pp. 853–860, 2003.
[56]
C. Dong, K. Vincent, and P. Sharp, “Simultaneous mutation detection of three homoeologous genes in wheat by high resolution melting analysis and mutation Surveyor,” BMC Plant Biology, vol. 9, article 143, 2009.
[57]
T. Ishikawa, Y. Kamei, S. Otozai et al., “High-resolution melting curve analysis for rapid detection of mutations in a Medaka TILLING library,” BMC Molecular Biology, vol. 11, article 70, 2010.
[58]
D. Van Den Boom and M. Ehrich, “Discovery and identification of sequence polymorphisms and mutations with MALDI-TOF MS,” Methods in Molecular Biology, vol. 366, pp. 287–306, 2007.
[59]
Y. Fu, S. Xu, C. Pan, M. Ye, H. Zou, and B. Guo, “A matrix of 3,4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Nucleic Acids Research, vol. 34, no. 13, article e94, 2006.
[60]
D. Rigola, J. van Oeveren, A. Janssen et al., “High-throughput detection of induced mutations and natural variation using KeyPoint? technology,” PLoS ONE, vol. 4, no. 3, article se4761, 2009.
[61]
H. Tsai, T. Howell, R. Nitcher et al., “Discovery of rare mutations in populations: tilling by sequencing,” Plant Physiology, vol. 156, no. 3, pp. 1257–1268, 2011.
[62]
B. A. Flusberg, D. R. Webster, J. H. Lee et al., “Direct detection of DNA methylation during single-molecule, real-time sequencing,” Nature Methods, vol. 7, no. 6, pp. 461–465, 2010.
[63]
H. M. Lam, X. Xu, X. Liu et al., “Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection,” Nature Genetics, vol. 42, no. 12, pp. 1053–1059, 2010.
[64]
J. Lai, R. Li, X. Xu et al., “Genome-wide patterns of genetic variation among elite maize inbred lines,” Nature Genetics, vol. 42, no. 11, pp. 1027–1030, 2010.
[65]
E. C. Dierking and K. D. Bilyeu, “New sources of soybean seed meal and oil composition traits identified through TILLING,” BMC Plant Biology, vol. 9, article 89, 2009.
[66]
E. O. Speer, “A method of retaining phloroglucinol proof of lignin,” Stain Technology, vol. 62, no. 4, pp. 279–280, 1987.
[67]
K. Iiyama and A. F. A. Wallis, “An improved acetyl bromide procedure for determining lignin in woods and wood pulps,” Wood Science and Technology, vol. 22, no. 3, pp. 271–280, 1988.
[68]
V. Vivekanand, A. Chawade, M. Larsson, A. Larsson, and O. Olsson, “Identification and qualitative characterisation of high and low lignin lines from an oat TILLING population,” In preparation.
[69]
B. V. McCleary and R. Codd, “Measurement of (1 → 3),(1 → 4)-β-D-glucan in barley and oats: a streamlined enzymic procedure,” Journal of the Science of Food and Agriculture, vol. 55, no. 2, pp. 303–312, 1991.
[70]
P. Sikora, S. Tosh, Y. Brummer, and O. Olsson, “Identification of high ?-glucan oat lines and chemical characterisation of ?-glucans,” In Preparation.
[71]
L. S. Barkawi, Y. Y. Tam, J. A. Tillman, J. Normanly, and J. D. Cohen, “A high-throughput method for the quantitative analysis of auxins,” Nature Protocols, vol. 5, no. 10, pp. 1609–1618, 2010.
[72]
W. D. Reiter, C. Chapple, and C. R. Somerville, “Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition,” Plant Journal, vol. 12, no. 2, pp. 335–345, 1997.
[73]
J. Junhyun, S.-Y. Park, M.-H. Chi, et al., “High throughput phenotype screening pipeline for functional genomics in Magnaporthe oryzae,” Protocol Exchange, 2007.
[74]
D. W. Parry, P. Jenkinson, and L. McLeod, “Fusarium ear blight (scab) in small grain cereals—a review,” Plant Pathology, vol. 44, no. 2, pp. 207–238, 1995.
[75]
M. McMullen, R. Jones, and D. Gallenberg, “Scab of wheat and barley: a re-emerging disease of devastating impact,” Plant Disease, vol. 81, no. 12, pp. 1340–1348, 1997.
[76]
W. Spielmeyer, M. H. Ellis, and P. M. Chandler, “Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 9043–9048, 2002.
[77]
T. Singer, Y. Fan, H. S. Chang, T. Zhu, S. P. Hazen, and S. P. Briggs, “A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization.,” PLoS Genetics, vol. 2, no. 9, article e144, 2006.
[78]
J. D. Edwards, J. Janda, M. T. Sweeney et al., “Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice,” Plant Methods, vol. 4, no. 1, article 13, 2008.
[79]
X. Huang, Q. Feng, Q. Qian et al., “High-throughput genotyping by whole-genome resequencing,” Genome Research, vol. 19, no. 6, pp. 1068–1076, 2009.
[80]
K. Schneeberger, S. Ossowski, C. Lanz et al., “SHOREmap: simultaneous mapping and mutation identification by deep sequencing,” Nature Methods, vol. 6, no. 8, pp. 550–551, 2009.
[81]
R. S. Austin, D. Vidaurre, G. Stamatiou, et al., “Next-generation mapping of Arabidopsis genes,” Plant Journal, vol. 67, no. 4, pp. 715–725, 2011.
[82]
L. Feiz, J. M. Martin, and M. J. Giroux, “Creation and functional analysis of new Puroindoline alleles in Triticum aestivum,” Theoretical and Applied Genetics, vol. 118, no. 2, pp. 247–257, 2009.
[83]
K. Semagn, ?. Bj?rnstad, and M. N. Ndjiondjop, “An overview of molecular marker methods for plants,” African Journal of Biotechnology, vol. 5, no. 25, pp. 2540–2568, 2006.