全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psyche  2012 

An Insight into the Sialomes of Bloodsucking Heteroptera

DOI: 10.1155/2012/470436

Full-Text   Cite this paper   Add to My Lib

Abstract:

Saliva of bloodsucking arthropods contains dozens or hundreds of proteins that affect their hosts' mechanisms against blood loss (hemostasis) and inflammation. Because acquisition of the hematophagous habit evolved independently in several arthropod orders and at least twice within the true bugs, there is a convergent evolutionary scenario that creates a different salivary potion for each organism evolving independently to hematophagy. Additionally, the immune pressure posed by their hosts creates additional evolutionary pressure on the genes coding for salivary proteins, including gene obsolescence, which opens the niche for coopting new genes (exaptation). In the past 10 years, several salivary transcriptomes from bloodsucking Heteroptera and one from a seed-feeding Pentatomorpha were produced, allowing insight into the salivary potion of these organisms and the evolutionary pathway to the blood-feeding mode. 1. Introduction The order Hemiptera (bugs) comprises hemimetabolous insects having in common tubular mouthparts specialized for sucking liquid diets. The diet of Hemiptera is varied, the majority feeding on plants by either tapping the vessels conducting sap or by lacerating and flushing tissues such as leaves or seeds. Within the suborder Heteroptera (true bugs), predatory feeding (with killing of the victim) also occurs, mostly targeting other insects but also including small vertebrates such as giant water bugs and toad bugs, as well as blood or hemolymph feeding (without killing the victim) from vertebrate and invertebrate animals. The mouthparts are not only important for channeling the liquid meal but are extremely important mechanically in finding the proper spot for meal suction [1]. Saliva is produced, sometimes copiously, during the probing phase (the time between mouthpart contact with the food substrate and the commencement of the meal) and throughout the meal [31, 32]. This saliva is ejected at the tip of the maxillae by the salivary channel, which is built in between the interdigitations of the two plates that form the maxillae [33]. Saliva helps probing and feeding physically by liquefying insoluble or viscous tissues or by helping to seal the feeding site in sap suckers, were the phloem is under very high pressure [34]. Saliva has a biochemical role in aiding digestion of the meal, just as we have amylase in our own saliva; most remarkably, predacious bugs inject a highly hydrolytic cocktail into their victims that is digested while the prey is held by the predator, which can then later suck the liquefied victim and discard it as

References

[1]  D. Grimaldi and M. Engel, Evolution of the Insects, Cambridge University Press, New York, NY, USA, 2005.
[2]  J. M. C. Ribeiro, M. Schneider, and J. A. Guimaraes, “Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus,” Biochemical Journal, vol. 308, no. 1, pp. 243–249, 1995.
[3]  I. M. B. Francischetti, J. F. Andersen, and J. M. C. Ribeiro, “Biochemical and functional characterization of recombinant Rhodnius prolixus platelet aggregation inhibitor 1 as a novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides,” Biochemistry, vol. 41, no. 11, pp. 3810–3818, 2002.
[4]  I. M. B. Francischetti, J. M. C. Ribeiro, D. Champagne, and J. Andersen, “Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12639–12650, 2000.
[5]  J. F. Andersen and W. R. Montfort, “The crystal structure of nitrophorin 2. A trifunctional antihemostatic protein from the saliva of Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 275, no. 39, pp. 30496–30503, 2000.
[6]  J. M. C. Ribeiro and F. A. Walker, “High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2251–2257, 1994.
[7]  J. F. Andersen, I. M. B. Francischetti, J. G. Valenzuela, P. Schuck, and J. M. C. Ribeiro, “Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect,” The Journal of Biological Chemistry, vol. 278, no. 7, pp. 4611–4617, 2003.
[8]  J. F. Andersen and J. M. C. Ribeiro, “A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine,” Biochemistry, vol. 45, no. 17, pp. 5450–5457, 2006.
[9]  D. M. Golodne, R. Q. Monteiro, A. V. Gra?a-Souza, M. A. C. Silva-Neto, and G. C. Atella, “Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 278, no. 30, pp. 27766–27771, 2003.
[10]  J. M. C Ribeiro, J. M. H Hazzard, R. H. Nussenzveig, D. E. Champagne, F. A. Walker, et al., “Reversible binding of nitric oxide by a salivary nitrosylhemeprotein from the blood sucking bug, Rhodnius prolixus,” Science, vol. 260, Article ID 5107, pp. 539–541, 1993.
[11]  D. E. Champagne, R. H. Nussenzveig, and J. M. C. Ribeiro, “Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood- sucking insect Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 270, no. 15, pp. 8691–8695, 1995.
[12]  E. Faudry, S. P. Lozzi, J. M. Santana et al., “Triatoma infestans apyrases belong to the 5′-nucleotidase family,” The Journal of Biological Chemistry, vol. 279, no. 19, pp. 19607–19613, 2004.
[13]  E. Faudry, J. M. Santana, C. Ebel, T. Vernet, and A. R. L. Teixeira, “Salivary apyrases of Triatoma infestans are assembled into homo-oligomers,” Biochemical Journal, vol. 396, no. 3, pp. 509–515, 2006.
[14]  A. Morita, H. Isawa, Y. Orito, S. Iwanaga, Y. Chinzei, and M. Yuda, “Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans,” FEBS Journal, vol. 273, no. 13, pp. 2955–2962, 2006.
[15]  D. Ma, T. C. F. Assumpcao, Y. Li, J. F. Andersen, J. Ribeiro, I. M. B. Francischetti, et al., “Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of chagas disease, binds to TXA2 but does notinteract with GPVI,” Thrombosis and Haemostasis, vol. 1, no. 107, pp. 111–123, 2011.
[16]  H. Isawa, Y. Orito, N. Jingushi et al., “Identification and characterization of plasma kallikrein-kinin system inhibitors from salivary glands of the blood-sucking insect Triatoma infestans,” FEBS Journal, vol. 274, no. 16, pp. 4271–4286, 2007.
[17]  R. M. Martins, M. L. Sfor?a, R. Amino et al., “Lytic activity and structural differences of amphipathic peptides derived from trialysin,” Biochemistry, vol. 45, no. 6, pp. 1765–1774, 2006.
[18]  R. Amino, R. M. Martins, J. Procopio, I. Y. Hirata, M. A. Juliano, and S. Schenkman, “Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis,” The Journal of Biological Chemistry, vol. 277, no. 8, pp. 6207–6213, 2002.
[19]  C. Noeske-Jungblut, J. Kr?tzschmar, B. Haendler et al., “An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis,” The Journal of Biological Chemistry, vol. 269, no. 7, pp. 5050–5053, 1994.
[20]  B. Haendler, A. Becker, C. Noeske-Jungblut, J. Kratzschmar, P. Donner, and W. D. Schleuning, “Expression of active recombinant pallidipin, a novel platelet aggregation inhibitor, in the periplasm of Escherichia coli,” Biochemical Journal, vol. 307, no. 2, pp. 465–470, 1995.
[21]  C. Noeske-Jungblut, B. Haendler, P. Donner, A. Alagon, L. Possani, and W. D. Schleuning, “Triabin, a highly potent exosite inhibitor of thrombin,” The Journal of Biological Chemistry, vol. 270, no. 48, pp. 28629–28634, 1995.
[22]  E. Glusa, E. Bretschneider, J. Daum, and C. Noeske-Jungblut, “Inhibition of thrombin-mediated cellular effects by triabin, a highly potent anion-binding exosite thrombin inhibitor,” Thrombosis and Haemostasis, vol. 77, no. 6, pp. 1196–1200, 1997.
[23]  P. Fuentes-Prior, C. Noeske-Jungblut, P. Donner, W. D. Schleuning, R. Huber, and W. Bode, “Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 11845–11850, 1997.
[24]  C. D. Paddock, J. H. McKerrow, E. Hansell, K. W. Foreman, I. Hsieh, and N. Marshall, “Identification, cloning, and recombinant expression of procalin, a major triatomine allergen,” Journal of Immunology, vol. 167, no. 5, pp. 2694–2699, 2001.
[25]  T. C. F. Assump??o, P. H. Alvarenga, J. M. C. Ribeiro, J. F. Andersen, and I. M. B. Francischetti, “Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity: TXA2, PGF2α, and 15(S)-HETE,” The Journal of Biological Chemistry, vol. 285, no. 50, pp. 39001–39012, 2010.
[26]  J. G. Valenzuela, R. Charlab, M. Y. Galperin, and J. M. C. Ribeiro, “Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius: a new type of nucleotide-binding enzyme,” The Journal of Biological Chemistry, vol. 273, no. 46, pp. 30583–30590, 1998.
[27]  J. G. Valenzuela, F. A. Walker, and J. M. Ribeiro, “A salivary nitrophorin (nitric-oxide-carrying hemoprotein) in the bedbug Cimex lectularius,” Journal of Experimental Biology, vol. 198, pp. 1519–1526, 1995.
[28]  J. G. Valenzuela and J. M. C. Ribeiro, “Purification and cloning of the salivary nitrophorin from the hemipteran Cimex lectularius,” Journal of Experimental Biology, vol. 201, no. 18, pp. 2659–2664, 1998.
[29]  A. Weichsel, E. M. Maes, J. F. Andersen et al., “Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 594–599, 2005.
[30]  C. K. Meiser, H. Piechura, H. E. Meyer, B. Warscheid, G. A. Schaub, and C. Balczun, “A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity,” Insect Molecular Biology, vol. 19, no. 3, pp. 409–421, 2010.
[31]  W. G. Friend and J. J. B. Smith, “Feeding in Rhodnius prolixus: mouthpart activity and salivation, and their correlation with changes of electrical resistance,” Journal of Insect Physiology, vol. 17, no. 2, pp. 233–243, 1971.
[32]  A. C. Soares, J. Carvalho-Tavares, N. D. F. Gontijo, V. C. dos Santos, M. M. Teixeira, and M. H. Pereira, “Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin,” Journal of Insect Physiology, vol. 52, no. 5, pp. 468–472, 2006.
[33]  M. M. Lavoipierre, G. Dickerson, and R. M. Gordon, “Studies on the methods of feeding of blood-sucking arthropods. I. The manner in which triatomine bugs obtain their blood-meal, as observed in the tissues of the living rodent, with some remarks on the effects of the bite on human volunteers,” Annals of Tropical Medicine and Parasitology, vol. 53, pp. 235–250, 1959.
[34]  S. Dinant, J. L. Bonnemain, C. Girousse, and J. Kehr, “Phloem sap intricacy and interplay with aphid feeding,” Comptes Rendus, vol. 333, no. 6-7, pp. 504–515, 2010.
[35]  J. M. C. Ribeiro, et al., “Insect saliva: function, biochemistry and physiology,” in Regulatory Mechanisms of Insect Feeding, R. F. Chapman and G. de Boer, Eds., pp. 74–97, Chapman & Hall, London, 1995.
[36]  J. M. C. Ribeiro, J. Andersen, M. A. C. Silva-Neto, V. M. Pham, M. K. Garfield, and J. G. Valenzuela, “Exploring the sialome of the blood-sucking bug Rhodnius prolixus,” Insect Biochemistry and Molecular Biology, vol. 34, no. 1, pp. 61–79, 2004.
[37]  A. C. M. Bussacos, E. S. Nakayasu, M. M. Hecht et al., “Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon,” Journal of Proteomics, vol. 74, no. 9, pp. 1664–1672, 2011.
[38]  T. C. F. Assump??o, I. M. B. Francischetti, J. F. Andersen, A. Schwarz, J. M. Santana, and J. M. C. Ribeiro, “An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease,” Insect Biochemistry and Molecular Biology, vol. 38, no. 2, pp. 213–232, 2008.
[39]  A. Santos, J. M. C. Ribeiro, M. J. Lehane et al., “The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae),” Insect Biochemistry and Molecular Biology, vol. 37, no. 7, pp. 702–712, 2007.
[40]  T. C. Assump??o, D. P. Eaton, V. M. Pham, et al., “An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America,” American Journal of Tropical Medicine and Hygiene, vol. 86, no. 6, pp. 1005–1014, 2012.
[41]  J. M. Ribeiro, T. C. Assump??o, V. M. Pham, I. M. Francischetti, C. E. Reisenman, et al., “An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera),” Journal of Medical Entomology, vol. 49, no. 3, pp. 563–572, 2012.
[42]  H. Kato, R. C. Jochim, E. A. Gomez et al., “A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease,” Infection, Genetics and Evolution, vol. 10, no. 2, pp. 184–191, 2010.
[43]  T. C. F. Assump??o, S. Charneau, P. B. M. Santiago et al., “Insight into the salivary transcriptome and proteome of Dipetalogaster maxima,” Journal of Proteome Research, vol. 10, no. 2, pp. 669–679, 2011.
[44]  A. C. M. Bussacos, E. S. Nakayasu, M. M. Hecht et al., “Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals,” Journal of Proteomics, vol. 74, no. 9, pp. 1693–1700, 2011.
[45]  I. M. B. Francischetti, E. Calvo, J. F. Andersen et al., “Insight into the sialome of the bed bug, Cimex lectularius,” Journal of Proteome Research, vol. 9, no. 8, pp. 3820–3831, 2010.
[46]  I. M. B. Francischetti, A. H. Lopes, F. A. Dias, V. M. Pham, and J. M. C. Ribeiro, “An insight into the sialotranscriptome of the seed-feeding bug, oncopeltus fasciatus,” Insect Biochemistry and Molecular Biology, vol. 37, no. 9, pp. 903–910, 2007.
[47]  R. H. Cobben, et al., “On the original feeding habits of the hemiptera (Insecta): a reply to Merrill Sweet,” Annals of the Entomological Society of America, vol. 72, no. 6, pp. 711–715, 1979.
[48]  V. Hyp?a, D. F. Tietz, J. Zrzavy, R. O. M. Rego, C. Galvao, and J. Jurberg, “Phylogeny and biogeography of triatominae (Hemiptera: Reduviidae): molecular evidence of a New world origin of the asiatic clade,” Molecular Phylogenetics and Evolution, vol. 23, no. 3, pp. 447–457, 2002.
[49]  C. J. Schofield and C. Galv?o, “Classification, evolution, and species groups within the triatominae,” Acta Tropica, vol. 110, no. 2-3, pp. 88–100, 2009.
[50]  J. G. Valenzuela, O. M. Chuffe, and J. M. C. Ribeiro, “Apyrase and anti-platelet activities from the salivary glands of the bed bug Cimex lectularius,” Insect Biochemistry and Molecular Biology, vol. 26, no. 6, pp. 557–562, 1996.
[51]  E. Faudry, P. S. Rocha, T. Vernet, S. P. Lozzi, and A. R. L. Teixeira, “Kinetics of expression of the salivary apyrases in Triatoma infestans,” Insect Biochemistry and Molecular Biology, vol. 34, no. 10, pp. 1051–1058, 2004.
[52]  W. R. Montfort, A. Weichsel, and J. F. Andersen, “Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 110–118, 2000.
[53]  J. F. Andersen, D. E. Champagne, A. Weichsel et al., “Nitric oxide binding and crystallization of recombinant nitrophorin I, a nitric oxide transport protein from the blood-sucking bug Rhodnius prolixus,” Biochemistry, vol. 36, no. 15, pp. 4423–4428, 1997.
[54]  A. Weichsel, J. F. Andersen, D. E. Champagne, F. A. Walker, and W. R. Montfort, “Crystal structures of a nitric oxide transport protein from a blood-sucking insect,” Nature Structural Biology, vol. 5, no. 4, pp. 304–309, 1998.
[55]  J. F. Andersen, A. Weichsel, C. A. Balfour, D. E. Champagne, and W. R. Montfort, “The crystal structure of nitrophorin 4 at 1.5 ? resolution: transport of nitric oxide by a lipocalin-based heme protein,” Structure, vol. 6, no. 10, pp. 1315–1327, 1998.
[56]  I. M. B. Francischetti, A. Sá-Nunes, B. J. Mans, I. M. Santos, and J. M. C. Ribeiro, “The role of saliva in tick feeding,” Frontiers in Bioscience, vol. 14, no. 6, pp. 2051–2088, 2009.
[57]  I. M. B. Francischetti, “Platelet aggregation inhibitors from hematophagous animals,” Toxicon, vol. 56, no. 7, pp. 1130–1144, 2010.
[58]  J. W. Cornwall and W. S. Patton, “Some observations on the salivary secretion of the common blood-sucking insects and ticks,” Indian Journal of Medical Research, vol. 2, pp. 569–593, 1914.
[59]  J. M. C. Ribeiro and E. S. Garcia, “Platelet antiaggregating activity in the salivary secretion of the blood sucking bug Rhodnius prolixus,” Experientia, vol. 37, no. 4, pp. 384–386, 1981.
[60]  M. J. Mant and K. R. Parker, “Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombine and citrate in in vitro platelet aggregation,” British Journal of Haematology, vol. 48, no. 4, pp. 601–608, 1981.
[61]  J. M. C. Ribeiro, A. Vachereau, G. B. Modi, and R. B. Tesh, “A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis,” Science, vol. 243, no. 4888, pp. 212–214, 1989.
[62]  K. Hellmann and R. I. Hawkins, “Prolixin-S and Prolixin-G; two anticoagulants from Rhodnius prolixus St?l,” Nature, vol. 207, no. 4994, pp. 265–267, 1965.
[63]  J. J. B. Smith, R. A. Cornish, and J. Wilkes, “Properties of a calcium-dependent apyrase in the saliva of the blood-feeding bug, Rhodnius prolixus,” Experientia, vol. 36, no. 8, pp. 898–900, 1980.
[64]  J. M. C. Ribeiro, R. Gonzales, and O. Marinotti, “A salivary vasodilator in the blood-sucking bug, Rhodnius prolixus,” British Journal of Pharmacology, vol. 101, no. 4, pp. 932–936, 1990.
[65]  R. R. Cavalcante, M. H. Pereira, and N. F. Gontijo, “Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects,” Parasitology, vol. 127, no. 1, pp. 87–93, 2003.
[66]  J. M. C. Ribeiro, “The antiserotonin and antihistamine activities of salivary secretion of Rhodnius prolixus,” Journal of Insect Physiology, vol. 28, no. 1, pp. 69–75, 1982.
[67]  J. M. C. Ribeiro and J. J. F. Sarkis, “Anti-thromboxane activity in Rhodnius prolixus salivary secretion,” Journal of Insect Physiology, vol. 28, no. 8, pp. 655–660, 1982.
[68]  á. Dan, M. H. Pereira, J. L. Pesquero, L. Diotaiuti, and P. S. Lacerda Beir?o, “Action of the saliva of Triatoma infestans (Heteroptera: Reduviidae) on sodium channels,” Journal of Medical Entomology, vol. 36, no. 6, pp. 875–879, 1999.
[69]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[70]  M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000.
[71]  D. L. Wheeler, T. Barrett, D. A. Benson et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 33, pp. D39–D45, 2005.
[72]  A. Marchler-Bauer, A. R. Panchenko, B. A. Shoemarker, P. A. Thiessen, L. Y. Geer, and S. H. Bryant, “CDD: a database of conserved domain alignments with links to domain three-dimensional structure,” Nucleic Acids Research, vol. 30, no. 1, pp. 281–283, 2002.
[73]  H. Nielsen, S. Brunak, and G. von Heijne, “Machine learning approaches for the prediction of signal peptides and other protein sorting signals,” Protein Engineering, vol. 12, no. 1, pp. 3–9, 1999.
[74]  E. L. Sonnhammer, G. von Heijne, and A. Krogh, “A hidden Markov model for predicting transmembrane helices in protein sequences,” Proceedings International Conference on Intelligent Systems for Molecular Biology, vol. 6, pp. 175–182, 1998.
[75]  J. E. Hansen, O. Lund, N. Tolstrup, A. A. Gooley, K. L. Williams, and S. Brunak, “NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility,” Glycoconjugate Journal, vol. 15, no. 2, pp. 115–130, 1998.
[76]  “Heteroptera: true bugs,” http://tolweb.org/Heteroptera/10805/2009.02.27.
[77]  H. M. Kalckar, “Adenylpyrophosphatase and myokinase,” The Journal of Biological Chemistry, vol. 153, pp. 355–373, 1945.
[78]  O. Meyerhoff, et al., “The origin of the reaction of Harden and Young in cell-free alcoholic fermentation,” The Journal of Biological Chemistry, vol. 157, pp. 105–119, 1945.
[79]  P. S. Krishnam, “Studies on apyrase. II: some properties of potato apyrase,” Archives of Biochemistry, vol. 20, no. 2, pp. 272–283, 1949.
[80]  K. H. Lee, J. Z. Ksezanoski, J. J. Eiler, et al., “Mode of action of potato apyrase,” Proceedings of the Society for Experimental Biology and Medicine, vol. 1, no. 94, pp. 193–195, 1957.
[81]  X. D. Gao, V. Kaigorodov, and Y. Jigami, “YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 274, no. 30, pp. 21450–21456, 1999.
[82]  C. D'Alessio, E. S. Trombetta, and A. J. Parodi, “Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe,” The Journal of Biological Chemistry, vol. 278, no. 25, pp. 22379–22387, 2003.
[83]  J. J. Sarkis, J. A. Guimar?es, and J. M. Ribeiro, “Salivary apyrase of Rhodnius prolixus. Kinetics and purification,” Biochemical Journal, vol. 233, no. 3, pp. 885–891, 1986.
[84]  J. M. C. Ribeiro and E. S. Garcia, “The salivary and crop apyrase activity of Rhodnius prolixus,” Journal of Insect Physiology, vol. 26, no. 5, pp. 303–307, 1980.
[85]  J. M. C. Ribeiro, J. J. F. Sarkis, P. A. Rossignol, and A. Spielman, “Salivary apyrase of Aedes aegypti: characterization and secretory fate,” Comparative Biochemistry and Physiology B, vol. 79, no. 1, pp. 81–86, 1984.
[86]  J. M. C. Ribeiro, P. A. Rossignol, and A. Spielman, “Salivary gland apyrase determines probing time in anopheline mosquitoes,” Journal of Insect Physiology, vol. 31, no. 9, pp. 689–692, 1985.
[87]  D. E. Champagne, C. T. Smartt, J. M. C. Ribeiro, and A. A. James, “The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 694–698, 1995.
[88]  J. Schulte Am Esch, J. Sévigny, E. Kaczmarek et al., “Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity,” Biochemistry, vol. 38, no. 8, pp. 2248–2258, 1999.
[89]  K. T. Tan, S. P. Watson, and G. Y. H. Lip, “The endothelium and platelets in cardiovascular disease: potential targets for therapeutic intervention,” Current Medicinal Chemistry, vol. 2, no. 2, pp. 169–178, 2004.
[90]  A. J. Marcus, M. J. Broekman, J. H. F. Drosopoulos et al., “Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection,” Seminars in Thrombosis and Hemostasis, vol. 31, no. 2, pp. 234–246, 2005.
[91]  B. U. Failer, N. Braun, and H. Zimmermann, “Cloning, expression, and functional characterization of a Ca2+-dependent endoplasmic reticulum nucleoside diphosphatase,” The Journal of Biological Chemistry, vol. 277, no. 40, pp. 36978–36986, 2002.
[92]  C. Devader, R. J. Webb, G. M. H. Thomas, and L. Dale, “Xenopus apyrase (xapy), a secreted nucleotidase that is expressed during early development,” Gene, vol. 367, no. 1-2, pp. 135–141, 2006.
[93]  J. G. Valenzuela, Y. Belkaid, E. Rowton, and J. M. C. Ribeiro, “The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases,” Journal of Experimental Biology, vol. 204, no. 2, pp. 229–237, 2001.
[94]  D. Sun, A. Mcnicol, A. A. James, and Z. Peng, “Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor,” Platelets, vol. 17, no. 3, pp. 178–184, 2006.
[95]  M. Andersson, “Diadenosine tetraphosphate (Ap4A): its presence and functions in biological systems,” International Journal of Biochemistry, vol. 21, no. 7, pp. 707–714, 1989.
[96]  H. Schlüter, M. Tepel, and W. Zidek, “Vascular actions of diadenosine phosphates,” Journal of Autonomic Pharmacology, vol. 16, no. 6, pp. 357–362, 1996.
[97]  L. L. Kisselev, J. Justesen, A. D. Wolfson, and L. Y. Frolova, “Diadenosine oligophosphates (AP(n)A), a novel class of signalling molecules?” FEBS Letters, vol. 427, no. 2, pp. 157–163, 1998.
[98]  B. M. Stavrou, “Diadenosine polyphosphates: postulated mechanisms mediating the cardiac effects,” Current Medicinal Chemistry, vol. 1, no. 2, pp. 151–169, 2003.
[99]  E. Calvo and J. M. C. Ribeiro, “A novel secreted endonuclease from Culex quinquefasciatus salivary glands,” Journal of Experimental Biology, vol. 209, no. 14, pp. 2651–2659, 2006.
[100]  J. G. Valenzuela, M. Garfield, E. D. Rowton, and V. M. Pham, “Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi,” Journal of Experimental Biology, vol. 207, no. 21, pp. 3717–3729, 2004.
[101]  J. M. Anderson, F. Oliveira, S. Kamhawi et al., “Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis,” BMC Genomics, vol. 7, article 52, 2006.
[102]  J. M. C. Ribeiro, R. Charlab, and J. G. Valenzuela, “The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti,” Journal of Experimental Biology, vol. 204, no. 11, pp. 2001–2010, 2001.
[103]  R. Charlab, E. D. Rowton, and J. M. C. Ribeiro, “The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis,” Experimental Parasitology, vol. 95, no. 1, pp. 45–53, 2000.
[104]  H. Kato, R. C. Jochim, P. G. Lawyer, and J. G. Valenzuela, “Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in sub-Saharan Africa,” Journal of Experimental Biology, vol. 210, no. 5, pp. 733–740, 2007.
[105]  S. J. Harris, R. V. Parry, J. Westwick, and S. G. Ward, “Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes,” The Journal of Biological Chemistry, vol. 283, no. 5, pp. 2465–2469, 2008.
[106]  S. P. Watson, B. Reep, R. T. McConnell, and E. G. Lapetina, “Collagen stimulates [3H]inositol triphosphate formation in indomethacin-treated human platelets,” Biochemical Journal, vol. 226, no. 3, pp. 831–837, 1985.
[107]  R. Amino, A. S. Tanaka, and S. Schenkman, “Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae),” Insect Biochemistry and Molecular Biology, vol. 31, no. 4-5, pp. 465–472, 2001.
[108]  G. Colebatch, P. Cooper, and P. East, “cDNA cloning of a salivary chymotrypsin-like protease and the identification of six additional cDNAs encoding putative digestive proteases from the green mirid, Creontiades dilutus (Hemiptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 32, no. 9, pp. 1065–1075, 2002.
[109]  Y. C. Zhu, F. Zeng, and B. Oppert, “Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 33, no. 9, pp. 889–899, 2003.
[110]  F. Zeng, Y. C. Zhu, and A. C. Cohen, “Molecular cloning and partial characterization of a trypsin-like protein in salivary glands of Lygus hesperus (hemiptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 32, no. 4, pp. 455–464, 2002.
[111]  I. M. B. Francischetti, T. N. Mather, and J. M. C. Ribeiro, “Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis,” Biochemical and Biophysical Research Communications, vol. 305, no. 4, pp. 869–875, 2003.
[112]  I. M. B. Francischetti, T. N. Mather, and J. M. C. Ribeiro, “Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis,” Thrombosis and Haemostasis, vol. 94, no. 1, pp. 167–174, 2005.
[113]  M. P. Williamson, D. Marion, and K. Wüthrich, “Secondary structure in the solution conformation of the proteinase inhibitor IIA from bull seminal plasma by nuclear magnetic resonance,” Journal of Molecular Biology, vol. 173, no. 3, pp. 341–359, 1984.
[114]  I. T. N. Campos, R. Amino, C. A. M. Sampaio et al., “Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor,” Insect Biochemistry and Molecular Biology, vol. 32, no. 9, pp. 991–997, 2002.
[115]  D. V. Lovato, I. T. Nicolau de Campos, R. Amino, and A. S. Tanaka, “The full-length cDNA ofanticoagulant protein infestin revealed anovel releasable Kazal domain, aneutrophil elastase inhibitor lacking anticoagulant activity,” Biochimie, vol. 88, no. 6, pp. 673–681, 2006.
[116]  T. Friedrich, B. Kroger, S. Bialojan et al., “A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 268, no. 22, pp. 16216–16222, 1993.
[117]  K. Mende, O. Petoukhova, V. Koulitchkova et al., “Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect Dipetalogaster maximus. cDNA cloning, expression and characterization,” European Journal of Biochemistry, vol. 266, no. 2, pp. 583–590, 1999.
[118]  H. Isawa, M. Yuda, K. Yoneda, and Y. Chinzei, “The insect salivary protein, prolixin-S, inhibits factor IXa generation and Xase complex formation in the blood coagulation pathway,” The Journal of Biological Chemistry, vol. 275, no. 9, pp. 6636–6641, 2000.
[119]  H. J. M?gert, L. St?ndker, P. Kreutzmann et al., “LEKTI, a novel 15-domain type of human serine proteinase inhibitor,” The Journal of Biological Chemistry, vol. 274, no. 31, pp. 21499–21502, 1999.
[120]  R. Augustin, S. Siebert, and T. C. G. Bosch, “Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra's innate immune system,” Developmental and Comparative Immunology, vol. 33, no. 7, pp. 830–837, 2009.
[121]  P. Taká?, M. A. Nunn, J. Mészáros et al., “Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands,” Journal of Experimental Biology, vol. 209, no. 2, pp. 343–352, 2006.
[122]  M. R. Kanost, “Serine proteinase inhibitors in arthropod immunity,” Developmental and Comparative Immunology, vol. 23, no. 4-5, pp. 291–301, 1999.
[123]  J. C. Rau, L. M. Beaulieu, J. A. Huntington, and F. C. Church, “Serpins in thrombosis, hemostasis and fibrinolysis,” Journal of Thrombosis and Haemostasis, vol. 5, no. 1, pp. 102–115, 2007.
[124]  K. R. Stark and A. A. James, “Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti,” The Journal of Biological Chemistry, vol. 273, no. 33, pp. 20802–20809, 1998.
[125]  E. Calvo, D. M. Mizurini, A Sá-Nunes, et al., “Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity,” The Journal of Biological Chemistry, vol. 286, no. 32, pp. 27998–28010, 2011.
[126]  C. Kellenberger and A. Roussel, “Structure-activity relationship within the serine protease inhibitors of the Pacifastin family,” Protein and Peptide Letters, vol. 12, no. 5, pp. 409–414, 2005.
[127]  M. Abrahamson, M. Alvarez-Fernandez, and C. M. Nathanson, “Cystatins,” Biochemical Society Symposium, no. 70, pp. 179–199, 2003.
[128]  M. Solomon, B. Belenghi, M. Delledonne, E. Menachem, and A. Levine, “The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants,” Plant Cell, vol. 11, no. 3, pp. 431–443, 1999.
[129]  M. Estelle, “Proteases and cellular regulation in plants,” Current Opinion in Plant Biology, vol. 4, no. 3, pp. 254–260, 2001.
[130]  M. Kotsyfakis, A. Sá-Nunes, I. M. B. Francischetti, T. N. Mather, J. F. Andersen, and J. M. C. Ribeiro, “Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis,” The Journal of Biological Chemistry, vol. 281, no. 36, pp. 26298–26307, 2006.
[131]  D. R. Flower, A. C. T. North, and C. E. Sansom, “The lipocalin protein family: structural and sequence overview,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 9–24, 2000.
[132]  J. F. Andersen, N. P. Gudderra, I. M. B. Francischetti, and J. M. C. Ribeiro, “The role of salivary lipocalins in blood feeding by Rhodnius prolixus,” Archives of Insect Biochemistry and Physiology, vol. 58, no. 2, pp. 97–105, 2005.
[133]  S. Schlehuber and A. Skerra, “Lipocalins in drug discovery: from natural ligand-binding proteins to 'anticalins',” Drug Discovery Today, vol. 10, no. 1, pp. 23–33, 2005.
[134]  S. Ohno, Evolution by Gene Duplication, Springer, Berlin, Germany, 1970.
[135]  E. V. Koonin, “Orthologs, paralogs, and evolutionary genomics,” Annual Review of Genetics, vol. 39, pp. 309–338, 2005.
[136]  B. J. Mans, A. I. Louw, and A. W. H. Neitz, “Evolution of hematophagy in ticks: common-origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros,” Molecular Biology and Evolution, vol. 19, no. 10, pp. 1695–1705, 2002.
[137]  M. Hurles, “Gene duplication: the genomic trade in spare parts,” PLos Biology, vol. 2, no. 7, Article ID E206, 2004.
[138]  J. M. C. Ribeiro, B. J. Mans, and B. Arcà, “An insight into the sialome of blood-feeding Nematocera,” Insect Biochemistry and Molecular Biology, vol. 40, no. 11, pp. 767–784, 2010.
[139]  B. G. Fry, K. Roelants, D. E. Champagne et al., “The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms,” Annual Review of Genomics and Human Genetics, vol. 10, pp. 483–511, 2009.
[140]  J. M. C Ribeiro and B. Arca, “From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects,” Advances in Insect Physiology, vol. 37, pp. 59–118, 2009.
[141]  Y. Zhang, J. M. C. Ribeiro, J. A. Guimar?es, and P. N. Walsh, “Nitrophorin-2: a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex,” Biochemistry, vol. 37, no. 30, pp. 10681–10690, 1998.
[142]  B. J. Mans and J. M. C. Ribeiro, “Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins,” Insect Biochemistry and Molecular Biology, vol. 38, no. 9, pp. 841–852, 2008.
[143]  B. J. Mans and J. M. C. Ribeiro, “A novel clade of cysteinyl leukotriene scavengers in soft ticks,” Insect Biochemistry and Molecular Biology, vol. 38, no. 9, pp. 862–870, 2008.
[144]  B. J. Mans, J. M. C. Ribeiro, and J. F. Andersen, “Structure, function, and evolution of biogenic amine-binding proteins in soft ticks,” The Journal of Biological Chemistry, vol. 283, no. 27, pp. 18721–18733, 2008.
[145]  S. Sangamnatdej, G. C. Paesen, M. Slovak, and P. A. Nuttall, “A high affinity serotonin- and histamine-binding lipocalin from tick saliva,” Insect Molecular Biology, vol. 11, no. 1, pp. 79–86, 2002.
[146]  G. C. Paesen, P. L. Adams, P. A. Nuttall, and D. L. Stuart, “Tick histamine-binding proteins: lipocalins with a second binding cavity,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 92–101, 2000.
[147]  G. C. Paesen, P. L. Adams, K. Harlos, P. A. Nuttall, and D. I. Stuart, “Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure,” Molecular Cell, vol. 3, no. 5, pp. 661–671, 1999.
[148]  M. A. Nunn, A. Sharma, G. C. Paesen et al., “Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata,” Journal of Immunology, vol. 174, no. 4, pp. 2084–2091, 2005.
[149]  V. B. Wigglesworth, et al., “The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood-sucking arthropods,” Proceedings of the Royal Society B, vol. 131, pp. 313–339, 1942.
[150]  J. M. C. Ribeiro, M. Schneider, T. Isaias, J. Jurberg, C. Galv?o, and J. A. Guimar?es, “Role of salivary antihemostatic components in blood feeding by triatomine bugs (Heteroptera),” Journal of Medical Entomology, vol. 35, no. 4, pp. 599–610, 1998.
[151]  K. Galindo and D. P. Smith, “A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla,” Genetics, vol. 159, no. 3, pp. 1059–1072, 2001.
[152]  D. S. Hekmat-Scafe, R. L. Dorit, and J. R. Carlson, “Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila,” Genetics, vol. 155, no. 1, pp. 117–127, 2000.
[153]  E. Calvo, B. J. Mans, J. M. C. Ribeiro, and J. F. Andersen, “Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3728–3733, 2009.
[154]  B. J. Mans, E. Calvo, J. M. C. Ribeiro, and J. F. Andersen, “The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36626–36633, 2007.
[155]  E. Calvo, B. J. Mans, J. F. Andersen, and J. M. C. Ribeiro, “Function and evolution of a mosquito salivary protein family,” The Journal of Biological Chemistry, vol. 281, no. 4, pp. 1935–1942, 2006.
[156]  H. Isawa, M. Yuda, Y. Orito, and Y. Chinzei, “A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen,” The Journal of Biological Chemistry, vol. 277, no. 31, pp. 27651–27658, 2002.
[157]  G. M. Gibbs, K. Roelants, and M. K. O'Bryan, “The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense,” Endocrine Reviews, vol. 29, no. 7, pp. 865–897, 2008.
[158]  Y. Yamazaki and T. Morita, “Structure and function of snake venom cysteine-rich secretory proteins,” Toxicon, vol. 44, no. 3, pp. 227–231, 2004.
[159]  Y. Yamazaki, H. Koike, Y. Sugiyama et al., “Cloning and characterization of novel snake venom proteins that block smooth muscle contraction,” European Journal of Biochemistry, vol. 269, no. 11, pp. 2708–2715, 2002.
[160]  M. Nobile, F. Noceti, G. Prestipino, and L. D. Possani, “Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules,” Experimental Brain Research, vol. 110, no. 1, pp. 15–20, 1996.
[161]  M. Ameri, X. Wang, M. J. Wilkerson, M. R. Kanost, and A. B. Broce, “An immunoglobulin binding protein (antigen 5) of the stable fly (diptera: Muscidae) salivary gland stimulates bovine immune responses,” Journal of Medical Entomology, vol. 45, no. 1, pp. 94–101, 2008.
[162]  D. Ma, X. Xu, S. An et al., “A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis,” Thrombosis and Haemostasis, vol. 105, no. 6, pp. 1032–1045, 2011.
[163]  D. Ma, Y. Wang, H. Yang et al., “Anti-thrombosis repertoire of blood-feeding horsefly salivary glands,” Molecular and Cellular Proteomics, vol. 8, no. 9, pp. 2071–2079, 2009.
[164]  X. Xu, H. Yang, D. Ma et al., “Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands,” Molecular and Cellular Proteomics, vol. 7, no. 3, pp. 582–590, 2008.
[165]  D. C. de Graaf, M. Aerts, M. Brunain et al., “Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies,” Insect Molecular Biology, vol. 19, no. 1, pp. 11–26, 2010.
[166]  J. Alves-Silva, J. M. C. Ribeiro, J. van den Abbeele et al., “An insight into the sialome of Glossina morsitans morsitans,” BMC Genomics, vol. 11, no. 1, article 213, 2010.
[167]  D. R. Maddison, K. S. Schulz, and W. P. Maddison, “The tree of life web project,” Zootaxa, no. 1668, pp. 19–40, 2007.
[168]  C. Galv?o, J. S. Patterson, D. Da Silva Rocha et al., “A new species of Triatominae from Tamil Nadu, India,” Medical and Veterinary Entomology, vol. 16, no. 1, pp. 75–82, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413