全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mutations in Lettuce Improvement

DOI: 10.1155/2011/723518

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement. 1. Introduction There is an increasing demand by consumers for nutritious foods that improve physical performance, reduce risks of diseases, and increase the life span. Lettuce (Lactuca sativa L.), commonly found in salad mixtures and sandwiches, is an important component in western diet and nutrition. Lettuce was the second most consumed fresh vegetable in the USA at 28.0 pounds per capita in 2008, behind potato at 36.7 pounds [1]. Lettuce belongs to the family Asteraceae (Compositae), tribe Cichorieae. Of about 100 species of Lactuca, only three (L. serriola L., L. saligna L., and L. virosa L.) can be crossed to lettuce by conventional hybridization methods and thus form the most important breeding group. They are all self-fertilized diploids with 2n = 2x = 18 chromosomes. There are five major types of lettuce: crisphead (iceberg), romaine, leaf, butterhead, and stem. Stem lettuce is mainly produced in China. In 2010, 58% of the lettuce production in the USA was of the head type, 29% was romaine, and 13% was leaf types [2]. Genetic variation is very important for any crop breeding program. The inbred nature of lettuce dictates the relatively limited genetic variability in the crop as compared to cross-pollinated crops. Mutation is a valuable tool to create novel traits for lettuce plants and can be classified as natural mutations and induced mutations (Table 1). Natural mutations are still occurring in the crop and its wild relatives, though at a low rate, and resulting beneficial characters can be selected for human needs. Mutagenic

References

[1]  Economic Research Service, U.S. Dept. of Agriculture, Loss-Adjusted food availability data, Vegetables, 2011, http://www.ers.usda.gov/Data/FoodConsumption/FoodGuideIndex.htm#veg.
[2]  National Agricultural Statistics Service, U.S. Dept. of Agriculture, Vegetables 2010 Summary, 2011, http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2011.pdf.
[3]  I. M. de Vries, “Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae),” Plant Systematics and Evolution, vol. 171, no. 1–4, pp. 233–248, 1990.
[4]  I. M. de Vries, “Origin and domestication of Lactuca sativa L,” Genetic Resources and Crop Evolution, vol. 44, no. 2, pp. 165–174, 1997.
[5]  R. Kesseli, O. Ochoa, and R. Michelmore, “Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa),” Genome, vol. 34, no. 3, pp. 430–436, 1991.
[6]  K. Lindqvist, “On the origin of cultivated lettuce,” Hereditas, vol. 46, pp. 319–350, 1960.
[7]  V. Feráková, The Genus Lactuca L. in Europe, Universita Komenskeho, Bratislava, Slovakia, 1977.
[8]  J. R. Harlan, “Lettuce and the sycomore: sex and romance in ancient Egypt,” Economic Botany, vol. 40, no. 1, pp. 4–15, 1986.
[9]  E. J. Ryder, Lettuce, Endive and Chicory, CABI Publishing, New York, NY, USA, 1999.
[10]  I. W. Boukema, T. Hazekamp, and T. J. L. van Hintum, CGN Collection Reviews: The CGN Lettuce Collection, Centre for Genetic Resources, Wageningen, The Netherlands, 1990.
[11]  W. Waycott, S. B. Fort, and E. J. Ryder, “Inheritance of dwarfing genes in Lactuca sativa L,” Journal of Heredity, vol. 86, no. 1, pp. 39–44, 1995.
[12]  W. Waycott and L. Taiz, “Phenotypic characterization of lettuce dwarf mutants and their response to applied gibberellins,” Plant Physiology, vol. 95, no. 4, pp. 1162–1168, 1991.
[13]  E. J. Ryder, “Ten lettuce genetic stocks with early flowering genes Ef-lef-1 and Ef-2ef-2,” HortScience, vol. 31, no. 3, pp. 473–475, 1996.
[14]  E. J. Ryder and D. C. Milligan, “Additional genes controlling flowering time in Lactuca sativa and L. serriola,” Journal of the American Society for Horticultural Science, vol. 130, no. 3, pp. 448–453, 2005.
[15]  E. J. Ryder, “Use of early flowering genes to reduce generation time in backcrossing, with specific application to lettuce breeding,” Journal of the American Society for Horticultural Science, vol. 110, pp. 570–573, 1985.
[16]  E. J. Ryder and W. Waycott, “New directions in salad crops: new forms, new tools, and old philosophy,” in Proceedings of the 2nd National Symposium NEW CROPS-Exploration, Research, and Commercialization, J. Janick and J. E. Simon, Eds., pp. 528–532, Indianapolis, Ind, USA, October 1991.
[17]  E. J. Ryder, “Linkage and inheritance in lettuce (Lactuca sativa L.),” Journal of the American Society for Horticultural Science, vol. 100, pp. 346–349, 1975.
[18]  R. W. Robinson, J. D. McCreight, and E. J. Ryder, “The genes of lettuce and closely related species,” Plant Breeding Reviews, vol. 1, pp. 267–293, 1983.
[19]  M. Z. Haque and M. B. E. Godward, “Effects of seed irradiation on M1 achenes of Lactuca and Cichorium,” Environmental and Experimental Botany, vol. 25, no. 1, pp. 53–65, 1985.
[20]  E. J. Ryder, Z. H. Kim, and W. Waycott, “Inheritance and epistasis studies of chlorophyll deficiency in lettuce,” Journal of the American Society for Horticultural Science, vol. 124, no. 6, pp. 636–640, 1999.
[21]  W. Waycott and E. J. Ryder, “‘Ice Cube’, ‘Blush’, and ‘Mini-Green’: miniature crisphead lettuce cultivars,” HortScience, vol. 29, pp. 333–334, 1994.
[22]  C. A. Mallory-Smith, D. C. Thill, and M. J. Dial, “Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola L.),” Weed Technology, vol. 4, pp. 163–168, 1990.
[23]  M. J. Guttieri, C. V. Eberiein, C. A. Mallory-Smith, D. C. Thill, and D. L. Hoffman, “DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and–susceptible weed biotypes,” Weed Science, vol. 40, pp. 670–676, 1992.
[24]  C. V. Eberlein, M. J. Guttieri, C. A. Mallory-Smith, D. C. Thill, and R. J. Baerg, “Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola),” Weed Science, vol. 45, no. 2, pp. 212–217, 1997.
[25]  C. A. Mallory-Smith, D. C. Thill, M. J. Dial, and R. S. Zemetra, “Inheritance of sulfonylurea herbicide resistance in Lactuca spp,” Weed Technology, vol. 4, pp. 787–790, 1990.
[26]  C. Mallory-Smith, D. C. Thill, and M. J. Dial, “ID-BR1: sulfonylurea herbicide-resistant lettuce germplasm,” HortScience, vol. 28, pp. 63–64, 1993.
[27]  R. W. Michelmore, O. E. Ochoa, and M. J. Truco, “Breeding crisphead lettuce,” California Lettuce Research Board Annual Report, pp. 51–54, 2002.
[28]  I. R. Crute and A. G. Johnson, “The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa,” Annals of Applied Biology, vol. 83, pp. 125–137, 1976.
[29]  A. G. Johnson, S. A. Laxton, I. R. Crute, P. L. Gordon, and J. M. Norwood, “Further work on the genetics of race-specific resistance in lettuce (Lactuca sativa) to downy mildew (Bremia lactucae),” Annals of Applied Biology, vol. 89, pp. 257–264, 1978.
[30]  B. F. Farrara, T. W. Ilott, and R. W. Michelmore, “Genetic analysis of factors for resistance to downy mildew (Bremia lactucae) in species of lettuce (Lactuca sativa and L. serriola),” Plant Pathology, vol. 36, pp. 499–514, 1987.
[31]  T. W. Ilott, S. H. Hulbert, and R. W. Michelmore, “Genetic analysis of the gene-for-gene interaction between lettuce (Lactuca sativa) and Bremia lactucae,” Phytopathology, vol. 79, pp. 888–897, 1989.
[32]  K. A. Shen, D. B. Chin, R. Arroyo-Garcia et al., “Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes,” Molecular Plant-Microbe Interactions, vol. 15, no. 3, pp. 251–261, 2002.
[33]  K. A. Shen, B. C. Meyers, M. N. Islam-Faridi, D. B. Chin, D. M. Stelly, and R. W. Michelmore, “Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce,” Molecular Plant-Microbe Interactions, vol. 11, no. 8, pp. 815–823, 1998.
[34]  P. A. Okubara, P. A. Anderson, O. E. Ochoa, and R. W. Michelmore, “Mutants of downy mildew resistance in Lactuca sativa (lettuce),” Genetics, vol. 137, no. 3, pp. 867–874, 1994.
[35]  P. A. Anderson, P. A. Okubara, R. Arroyo-Garcia, B. C. Meyers, and R. W. Michelmore, “Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa,” Molecular and General Genetics, vol. 251, no. 3, pp. 316–325, 1996.
[36]  B. C. Meyers, D. B. Chin, K. A. Shen et al., “The major resistance gene cluster in lettuce is highly duplicated and spans several megabases,” Plant Cell, vol. 10, no. 11, pp. 1817–1832, 1998.
[37]  P. A. Okubara, R. Arroyo-Garcia, K. A. Shen et al., “A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance,” Molecular Plant-Microbe Interactions, vol. 10, no. 8, pp. 970–977, 1997.
[38]  D. B. Chin, R. Arroyo-Garcia, O. E. Ochoa, R. V. Kesseli, D. O. Lavelle, and R. W. Michelmore, “Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa),” Genetics, vol. 157, no. 2, pp. 831–849, 2001.
[39]  H. Kuang, O. E. Ochoa, E. Nevo, and R. W. Michelmore, “The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2 locus,” Plant Journal, vol. 47, no. 1, pp. 38–48, 2006.
[40]  H. Kuang, S. S. Woo, B. C. Meyers, E. Nevo, and R. W. Michelmore, “Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce,” Plant Cell, vol. 16, no. 11, pp. 2870–2894, 2004.
[41]  A. J. Slade and V. C. Knauf, “TILLING moves beyond functional genomics into crop improvement,” Transgenic Research, vol. 14, no. 2, pp. 109–115, 2005.
[42]  Vegetable Genetic Improvement Network, Warwick University, 2011, http://www2.warwick.ac.uk/fac/sci/lifesci/research/vegin/lettuce/tilling/.
[43]  M. Sibi, “La notion de programme genetique chez les vegetaux superieurs. II Aspect experimental. Obtention de variants par culture de tissues in vitro sur Lactuca sativa L. apparition de viguer chez les chroisements,” Annales de Amelioration de Plantes, vol. 26, pp. 523–547, 1976.
[44]  D. E. Engler and R. G. Grogan, “Isolation, culture, and regeneration of lettuce leaf mesophyll protoplasts,” Plant Science Letters, vol. 28, pp. 223–229, 1983.
[45]  D. E. Engler and R. G. Grogan, “Variation in lettuce plants regenerated from protoplasts,” Journal of Heredity, vol. 75, no. 6, pp. 426–430, 1984.
[46]  C. H. Yang and C. I. Li, “A transgenic mutant defective in cell elongation and cellular organization during both root and shoot development in lettuce, Lactuca sativa,” Plant and Cell Physiology, vol. 40, no. 11, pp. 1108–1118, 1999.
[47]  C. H. Yang, J. G. Ellis, and R. W. Michelmore, “Infrequent transposition of Ac in lettuce, Lactuca sativa,” Plant Molecular Biology, vol. 22, no. 5, pp. 793–805, 1993.
[48]  M. Mazier, E. Botton, F. Flamain et al., “Successful gene tagging in lettuce using the Tnt1 retrotransposon from tobacco,” Plant Physiology, vol. 144, no. 1, pp. 18–31, 2007.
[49]  Y. G. Grigoriev, H. Planel, M. Delpoux et al., “Radiobiological investigations in Cosmos 782 space flight (Biobloc SF1 experiment),” Life Sciences and Space Research, vol. 16, pp. 137–142, 1978.
[50]  V. Nevzgodina, E. E. Kovalev, E. N. Maximova et al., “Changes in developmental capacity of artemia cyst and chromosomal aberrations in lettuce seeds flown aboard Salyut-7 (Biobloc III experiment),” Advances in Space Research, vol. 4, no. 10, pp. 71–76, 1984.
[51]  Y. Gaubin, E. E. Kovalev, H. Planel, L. V. Nevzgodina, G. Gasset, and B. Pianezzi, “Development capacity of artemia cysts and lettuce seeds flown in Cosmos 936 and directly exposed to cosmic rays,” Aviation, Space, and Environmental Medicine, vol. 50, pp. 134–138, 1979.
[52]  L. V. Nevzgodina, E. N. Maximova, and Y. A. Akatov, “Effects of prolonged exposure to space flight factors for 175 days on lettuce seeds,” Advances in Space Research, vol. 1, no. 14, pp. 83–85, 1981.
[53]  R. C. Grube, E. B. Brennan, and E. J. Ryder, “Characterization and genetic analysis of a lettuce (Lactuca sativa L.) mutant, weary, that exhibits reduced gravitropic response in hypocotyls and inflorescence stems,” Journal of Experimental Botany, vol. 54, no. 385, pp. 1259–1268, 2003.
[54]  J. Z. Kiss, “Mechanisms of the early phases of plant gravitropism,” Critical Reviews in Plant Sciences, vol. 19, no. 6, pp. 551–573, 2000.
[55]  D. L. Henninger, “Baseline crops for advanced life support program,” in Proceedings of the Meeting of the National Aeronautics and Space Administration Advanced Life Support Program, The Johnson Space Center, Houston, Tex, USA, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413