全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Transcriptomics Reveals 129 Transcripts That Are Temporally Regulated during Anther Development and Meiotic Progression in Both Bread Wheat (Triticum aestivum) and Rice (Oryza sativa)

DOI: 10.1155/2011/931898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Meiosis is a specialised type of cell division in sexually reproducing organisms that generates genetic diversity and prevents chromosome doubling in successive generations. The last decade has seen forward and reverse genetic approaches identifying many genes in the plant kingdom which highlight similarities and differences in the mechanics of meiosis between taxonomic kingdoms. We present here a high throughput in silico analysis, using bread wheat and rice, which has generated a list of 129 transcripts containing genes with meiotic roles and some which are currently unknown. 1. Introduction Since its inception over a decade ago, microarray technology has significantly increased its application-base and popularity. Initially developed to measure expression levels of given transcripts, microarrays provide a snapshot of the dynamic cellular transcriptomes which have been extracted from an isolated tissue-type. A common application of this technology is the comparison of the same tissue-type at the same stage of development between an experimental treatment or diseased tissue compared to a wild-type control. However, data from tissue time-courses/developmental series can also be generated with microarrays and have been reported in several species investigating different biological processes. Meiosis is one such biological process and results in the formation of four genetically unique gametes, hence promoting genetic variation. Furthermore, meiosis is essential in sexually reproducing organisms as it prevents chromosome doubling in successive generations. Using microarray or SOLiD RNA-seq platforms, various studies have investigated the meiotic transcriptomes (often time-course experiments) in a variety of kingdoms. Examples include yeast (Saccharomyces cerevisiae) [1], Drosophila [2], Caenorhabditis elegans [3], rat (Rattus rattus) [4], mouse (Mus musculus) [5], bread wheat (Triticum aestivum L.) [6], and, more recently, rice (Oryza sativa L.) [7] and Arabidopsis (Arabidopsis thaliana L.) [8]. While our understanding of meiosis in some nonplant systems such as budding yeast is extensive, our knowledge of meiosis in plants is less advanced. Nonetheless, in the past 10 years (further to what has been achieved in Arabidopsis and rice), there has been an ongoing research effort towards building our knowledge across several different plant species, including barley (Hordeum vulgare L.) [9], wheat (T. aestivum) [10–12], maize (Zea mays L.) [13], and tomato (Solanum lycopersicum L.) [14]. With some exceptions (for example, where a gene has been

References

[1]  S. Chu, J. DeRisi, M. Eisen et al., “The transcriptional program of sporulation in budding yeast,” Science, vol. 282, no. 5389, pp. 699–705, 1998.
[2]  J. Andrews, G. G. Bouffard, C. Cheadle, J. Lü, K. G. Becker, and B. Oliver, “Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis,” Genome Research, vol. 10, no. 12, pp. 2030–2043, 2000.
[3]  V. Reinke, H. E. Smith, J. Nance et al., “A global profile of germline gene expression in C. elegans,” Molecular Cell, vol. 6, no. 3, pp. 605–616, 2000.
[4]  U. Schlecht, P. Demougin, R. Koch et al., “Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1031–1043, 2004.
[5]  A. L. Y. Pang, W. Johnson, N. Ravindranath, M. Dym, O. M. Rennert, and W. Y. Chan, “Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development,” Physiological Genomics, vol. 24, no. 2, pp. 75–85, 2006.
[6]  W. Crismani, U. Baumann, T. Sutton et al., “Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat,” BMC Genomics, vol. 7, article 267, 2006.
[7]  P. Deveshwar, W. D. Bovill, R. Sharma, J. A. Able, and S. Kapoor, “Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice,” BMC Plant Biology, vol. 11, article 78, 2011.
[8]  H. Yang, P. Lu, Y. Wang, and H. Ma, “The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: The complexity and evolution of the meiotic process,” Plant Journal, vol. 65, no. 4, pp. 503–516, 2011.
[9]  A. H. Lloyd, A. S. Milligan, P. Langridge, and J. A. Able, “TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.),” BMC Plant Biology, vol. 7, article 67, 2007.
[10]  S. Griffiths, R. Sharp, T. N. Foote et al., “Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat,” Nature, vol. 439, no. 7077, pp. 749–752, 2006.
[11]  S. A. Boden, N. Shadiac, E. J. Tucker, P. Langridge, and J. A. Able, “Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum),” BMC Molecular Biology, vol. 8, article 65, 2007.
[12]  S. A. Boden, P. Langridge, G. Spangenberg, and J. A. Able, “TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1,” Plant Journal, vol. 57, no. 3, pp. 487–497, 2009.
[13]  W. P. Pawlowski, I. N. Golubovskaya, L. Timofejeva, R. B. Meeley, W. F. Sheridan, and W. Z. Cande, “Coordination of meiotic recombination, pairing, and synapsis by PHS1,” Science, vol. 303, no. 5654, pp. 89–92, 2004.
[14]  S. M. Tam, S. Samipak, A. Britt, and R. T. Chetelat, “Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato,” Genetica, vol. 137, no. 3, pp. 341–354, 2009.
[15]  S. J. Armstrong, A. P. Caryl, G. H. Jones, and F. C. H. Franklin, “Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica,” Journal of Cell Science, vol. 115, no. 18, pp. 3645–3655, 2002.
[16]  I. Rubin-Bejerano, S. Sagee, O. Friedman, L. Pnueli, and Y. Kassir, “The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-β homolog Rim11,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 6967–6979, 2004.
[17]  N. Jackson, E. Sanchez-Moran, E. Buckling, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis,” EMBO Journal, vol. 25, no. 6, pp. 1315–1323, 2006.
[18]  K. I. Nonomura, M. Nakano, M. Eiguchi, T. Suzuki, and N. Kurata, “PAIR2 is essential for homologous chromosome synapsis in rice meiosis I,” Journal of Cell Science, vol. 119, no. 2, pp. 217–225, 2006.
[19]  R. Mercier and M. Grelon, “Meiosis in plants: ten years of gene discovery,” Cytogenetic and Genome Research, vol. 120, no. 3-4, pp. 281–290, 2008.
[20]  W. D. Bovill, P. Deveshwar, S. Kapoor, and J. A. Able, “Whole genome approaches to identify early meiotic gene candidates in cereals,” Functional and Integrative Genomics, vol. 9, no. 2, pp. 219–229, 2009.
[21]  D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson, and N. J. Provart, “An “electronic fluorescent pictograph” Browser for exploring and analyzing large-scale biological data sets,” PLoS ONE, vol. 2, no. 8, article e718, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413