全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differential Expression of Three Flavanone 3-Hydroxylase Genes in Grains and Coleoptiles of Wheat

DOI: 10.1155/2011/369460

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flavonoid pigments are known to accumulate in red grains and coleoptiles of wheat and are synthesized through the flavonoid biosynthetic pathway. Flavanone 3-hydroxylase (F3H) is a key enzyme at a diverging point of the flavonoid pathway leading to production of different pigments: phlobaphene, proanthocyanidin, and anthocyanin. We isolated three F3H genes from wheat and examined a relationship between their expression and tissue pigmentation. Three F3Hs are located on the telomeric region of the long arm of chromosomes 2A, 2B, and 2D, respectively, designated as F3H-A1, F3H-B1, and F3H-D1. The telomeric regions of the long arms of the chromosomes of homoeologous group 2 of wheat showed a syntenic relationship to the telomeric region of the long arm of rice chromosome 4, on which rice F3H gene was also located. All three genes were highly activated in the red grains and coleoptiles and appeared to be controlled by flavonoid regulators in each tissue. 1. Introduction Flavonoid pigments are well known to play an important role in pigmentation of tissues such as flowers, fruits, and grains. These pigments not only render the tissues as more conspicuous but also add physiological function to tissues, such as protection against UV damage [1] and increased level of grain dormancy [2]. In wheat, red pigmentation was observed in many tissues including grain coats, coleoptiles, anthers, culms, and pericarps. Several genes affecting anthocyanin pigmentation (i.e., R-1 (R in former notation) for red grain, Rc for red coleoptile, Pan for purple anthers, Ra for red auricles, Pc for purple culms, and Pp for purple pericarp) have been reported [3]. Red-grained wheat has been reported to contain red flavonoid pigments, phlobaphene or proanthocyanidin (condensed tannin), in grain coat tissues [4]. In contrast, pigments of red coleoptiles were anthocyanin [5]. Phlobaphene, proanthocyanidin, and anthocyanin are synthesized through the common flavonoid biosynthetic pathway [6] (Figure 1). Phlobaphenes are compounds produced by polymerization of flavan-4-ols, which are synthesized by three enzymes: chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol 4-reductase (DFR) in the early steps of the flavonoid pathway. On the other hand, proanthocyanidin and anthocyanin are produced via 3,4-deoxy flavonoids, which are synthesized by four enzymes: CHS, CHI, F3H, and DFR. A step of F3H is a diverging point in the flavonoid pathway leading to the production of either phlobaphene or proanthocyanidin. Figure 1: Flavonoid biosynthetic pathway. The F3H gene is indicated

References

[1]  T. A. Holton and E. C. Cornish, “Genetics and biochemistry of anthocyanin biosynthesis,” The Plant Cell, vol. 7, no. 7, pp. 1071–1083, 1995.
[2]  E. Himi, D. J. Mares, A. Yanagisawa, and K. Noda, “Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat,” Journal of Experimental Botany, vol. 53, no. 374, pp. 1569–1574, 2002.
[3]  R. A. McIntosh, Y. Yamazaki, J. Dubcovsky, et al., Catalogue of Gene Symbols for Wheat, 2010.
[4]  T. Miyamoto and E. H. Everson, “Biochemical and physiological studies of wheat seed pigmentation,” Agronomy Journal, vol. 50, pp. 733–734, 1958.
[5]  E. Himi, A. Nisar, and K. Noda, “Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat,” Genome, vol. 48, no. 4, pp. 747–754, 2005.
[6]  B. Winkel-Shirley, “Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology,” Plant Physiology, vol. 126, no. 2, pp. 485–493, 2001.
[7]  J. Mol, E. Grofewold, and R. Koes, “How genes paint flowers and seeds,” Trends in Plant Science, vol. 3, no. 6, pp. 212–217, 1998.
[8]  N. Nesi, C. Jond, I. Debeaujon, M. Caboche, and L. Lepiniec, “The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed,” The Plant Cell, vol. 13, no. 9, pp. 2099–2114, 2001.
[9]  E. Himi, M. Maekawa, H. Miura, and K. Noda, “Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat,” Theoretical and Applied Genetics. In press.
[10]  U. Hartmann, M. Sagasser, F. Mehrtens, R. Stracke, and B. Weisshaar, “Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes,” Plant Molecular Biology, vol. 57, no. 2, pp. 155–171, 2005.
[11]  E. Himi and K. Noda, “Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression,” Journal of Experimental Botany, vol. 55, no. 396, pp. 365–375, 2004.
[12]  M. Meldgaard, “Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis,” Theoretical and Applied Genetics, vol. 83, no. 6-7, pp. 695–706, 1992.
[13]  L. Aravind and E. V. Koonin, “The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases,” Genome biology, vol. 2, no. 3, 2001.
[14]  R. Lukacin and L. Britsch, “Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase,” European Journal of Biochemistry, vol. 249, no. 3, pp. 748–757, 1997.
[15]  E. K. Khlestkina, M. S. Roder, and E. A. Salina, “Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat,” BMC Plant Biology, vol. 8, article 88, 2008.
[16]  N. Kurata, G. Moore, Y. Nagamura et al., “Conservation of genome structure between rice and wheat,” Bio/Technology, vol. 12, no. 3, pp. 276–278, 1994.
[17]  M. E. Sorells, M. La Rota, C. E. Bermudez-Kandianis et al., “Comparative DNA sequence analysis of wheat and rice genomes,” Genome Research, vol. 13, no. 8, pp. 1818–1827, 2003.
[18]  E. Himi and K. Noda, “Red grain colour gene (R) of wheat is a Myb-type transcription factor,” Euphytica, vol. 143, no. 3, pp. 239–242, 2005.
[19]  Y. Kagaya, K. Ohmiya, and T. Hattori, “RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants,” Nucleic Acids Research, vol. 27, no. 2, pp. 470–478, 1999.
[20]  S. Fowler and M. F. Thomashow, “Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway,” The Plant Cell, vol. 14, no. 8, pp. 1675–1690, 2002.
[21]  A. Leyva, J. A. Jarillo, J. Salinas, and J. M. Martinez-Zapater, “Low temperature induces the accumulation of Phenylalanine ammonia-lyase and Chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner,” Plant Physiology, vol. 108, no. 1, pp. 39–46, 1995.
[22]  M. Shvarts, A. Borochov, and D. Weiss, “Low temperature enhances petunia flower pigmentation and induced chalcone synthase gene expression,” Physiologia Plantarum, vol. 99, no. 1, pp. 67–72, 1997.
[23]  J. F. Martinez-Garcia, E. Moyano, M. J. Alcocer, and C. Martin, “Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors,” Plant Journal, vol. 13, no. 4, pp. 489–505, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133