全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat

DOI: 10.1155/2012/514398

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chromosome pairing, synapsis, and DNA recombination are three key processes that occur during early meiosis. A previous study of Poor Homologous Synapsis 1 (PHS1) in maize suggested that PHS1 has a role in coordinating these three processes. Here we report the isolation of wheat (Triticum aestivum) PHS1 (TaPHS1), and its expression profile during and after meiosis. While the TaPHS1 protein has sequence similarity to other plant PHS1/PHS1-like proteins, it also possesses a unique region of oligopeptide repeat units. We show that TaPHS1 interacts with both single- and double-stranded DNA in vitro and provide evidence of the protein region that imparts the DNA-binding ability. Immunolocalisation data from assays conducted using antisera raised against TaPHS1 show that TaPHS1 associates with chromatin during early meiosis, with the signal persisting beyond chromosome synapsis. Furthermore, TaPHS1 does not appear to colocalise with the asynapsis protein (TaASY1) suggesting that these proteins are probably independently coordinated. Significantly, the data from the DNA-binding assays and 3-dimensional immunolocalisation of TaPHS1 during early meiosis indicates that TaPHS1 interacts with DNA, a function not previously observed in either the Arabidopsis or maize PHS1 homologues. As such, these results provide new insight into the function of PHS1 during early meiosis in bread wheat. 1. Introduction For the majority of sexually reproducing organisms, meiosis is a cellular process required for gamete formation and is composed of one round of DNA replication, followed by two rounds of chromosome division. During meiosis I, a reductional division event leads to the segregation of homologous chromosome pairs, while an equational division during meiosis II leads to the segregation of the sister chromatids. For the successful juxtaposition of homologous chromosomes, three key processes occur during prophase I, namely, pairing, synapsis, and recombination. Previous studies investigating the molecular mechanisms of homologous chromosome pairing have revealed complex interplay between these three tightly linked processes [1–5]. In allopolyploid organisms such as bread wheat (Triticum aestivum), correct alignment and pairing of homologous chromosomes are complicated by the presence of genetically similar genomes, known as homoeologous genomes. Although bread wheat possesses three homoeologous genomes (termed A, B, and D), meiosis proceeds as if the organism is a diploid, in that pairing only occurs between homologous chromosomes from the same genome ([6–9] and references

References

[1]  S. J. Armstrong, F. C. H. Franklin, and G. H. Jones, “Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana,” Journal of Cell Science, vol. 114, no. 23, pp. 4207–4217, 2001.
[2]  Y. K. Chen, C. H. Leng, H. Olivares et al., “Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10572–10577, 2004.
[3]  J. D. Higgins, E. Sanchez-Moran, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over,” Genes and Development, vol. 19, no. 20, pp. 2488–2500, 2005.
[4]  C. Kerzendorfer, J. Vignard, A. Pedrosa-Harand et al., “The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination,” Journal of Cell Science, vol. 119, no. 12, pp. 2486–2496, 2006.
[5]  E. Martínez-Pérez, P. Shaw, L. Aragon-Alcaide, and G. Moore, “Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis,” Plant Journal, vol. 36, no. 1, pp. 21–29, 2003.
[6]  J. A. Able, W. Crismani, and S. A. Boden, “Understanding meiosis and the implications for crop improvement,” Functional Plant Biology, vol. 36, pp. 575–588, 2009.
[7]  J. A. Able and P. Langridge, “Wild sex in the grasses,” Trends in Plant Science, vol. 11, no. 6, pp. 261–263, 2006.
[8]  J. A. Able, P. Langridge, and A. S. Milligan, “Capturing diversity in the cereals: many options but little promiscuity,” Trends in Plant Science, vol. 12, no. 2, pp. 71–79, 2007.
[9]  G. Moore and P. Shaw, “Improving the chances of finding the right partner,” Current Opinion in Genetics and Development, vol. 19, no. 2, pp. 99–104, 2009.
[10]  R. Riley and V. Chapman, “Genetic control of the cytologically diploid behaviour of hexaploid wheat,” Nature, vol. 182, no. 4637, pp. 713–715, 1958.
[11]  E. R. Sears, “Induced mutant with homoeologous pairing in common wheat,” Canadian Journal of Genetics and Cytology, vol. 19, pp. 585–593, 1977.
[12]  E. Martínez-Pérez, P. Shaw, and G. Moore, “The Ph1 locus is needed to ensure specific somatic and meiotic centromere association,” Nature, vol. 411, no. 6834, pp. 204–207, 2001.
[13]  P. Prieto, P. Shaw, and G. Moore, “Homologue recognition during meiosis is associated with a change in chromatin conformation,” Nature Cell Biology, vol. 6, no. 9, pp. 906–908, 2004.
[14]  I. Colas, P. Shaw, P. Prieto et al., “Effective chromosome pairing requires chromatin remodeling at the onset of meiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6075–6080, 2008.
[15]  P. B. Holm, “Chromosome pairing and synaptonemal complex formation in hexaploid wheat, nullisomic for chromosome 5B,” Carlsberg Research Communications, vol. 53, no. 2, pp. 91–110, 1988.
[16]  P. B. Holm and X. Z. Wang, “The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chinese Spring,” Carlsberg Research Communications, vol. 53, no. 2, pp. 191–208, 1988.
[17]  N. Al-Kaff, E. Knight, I. Bertin et al., “Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling,” Annals of Botany, vol. 101, no. 6, pp. 863–872, 2008.
[18]  S. Griffiths, R. Sharp, T. N. Foote et al., “Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat,” Nature, vol. 439, no. 7077, pp. 749–752, 2006.
[19]  W. D. Bovill, D. Priyanka, K. Sanjay, and J. A. Able, “Whole genome approaches to identify early meiotic gene candidates in cereals,” Functional and Integrative Genomics, vol. 9, no. 2, pp. 219–229, 2009.
[20]  S. A. Boden, P. Langridge, G. Spangenberg, and J. A. Able, “TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1,” Plant Journal, vol. 57, no. 3, pp. 487–497, 2009.
[21]  S. A. Boden, N. Shadiac, E. J. Tucker, P. Langridge, and J. A. Able, “Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum),” BMC Molecular Biology, vol. 8, article 65, 2007.
[22]  A. P. Caryl, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1,” Chromosoma, vol. 109, no. 1-2, pp. 62–71, 2000.
[23]  K. I. Nonomura, M. Nakano, K. Murata et al., “An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis,” Molecular Genetics and Genomics, vol. 271, no. 2, pp. 121–129, 2004.
[24]  K. J. Ross, P. Fransz, S. J. Armstrong et al., “Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines,” Chromosome Research, vol. 5, no. 8, pp. 551–559, 1997.
[25]  J. Y. Bleuyard, M. E. Gallego, F. Savigny, and C. I. White, “Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair,” Plant Journal, vol. 41, no. 4, pp. 533–545, 2005.
[26]  J. Li, L. C. Harper, I. Golubovskaya et al., “Functional analysis of maize RAD51 in meiosis and double-strand break repair,” Genetics, vol. 176, no. 3, pp. 1469–1482, 2007.
[27]  W. P. Pawlowski, I. N. Golubovskaya, L. Timofejeva, R. B. Meeley, W. F. Sheridan, and W. Z. Cande, “Coordination of Meiotic Recombination, Pairing, and Synapsis by PHS1,” Science, vol. 303, no. 5654, pp. 89–92, 2004.
[28]  A. Ronceret, M. P. Doutriaux, I. N. Golubovskaya, and W. P. Pawlowski, “PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 20121–20126, 2009.
[29]  J. D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak, “Improved prediction of signal peptides: signalP 3.0,” Journal of Molecular Biology, vol. 340, no. 4, pp. 783–795, 2004.
[30]  P. Horton, K.-J. Park, T. Obayashi et al., “WoLF PSORT: protein localization predictor,” Nucleic Acids Research, vol. 35, pp. W585–W587, 2007.
[31]  B. Rost, G. Yachdav, and J. F. Liu, “The PredictProtein server,” Nucleic Acids Research, vol. 32, pp. W321–W326, 2004.
[32]  N. Saitou and M. Nei, “The neighbor-joining method—a new method for reconstructing phylogenetic trees,” Molecular biology and evolution, vol. 4, no. 4, pp. 406–425, 1987.
[33]  K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007.
[34]  F. Tajima, “Simple methods for testing the molecular evolutionary clock hypothesis,” Genetics, vol. 135, no. 2, pp. 599–607, 1993.
[35]  A. H. Lloyd, A. S. Milligan, P. Langridge, and J. A. Able, “TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.),” BMC Plant Biology, vol. 7, article 67, 2007.
[36]  W. Crismani, U. Baumann, T. Sutton et al., “Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat,” BMC Genomics, vol. 7, article 267, 2006.
[37]  X. X. Wang, X. F. Li, and Y. X. Li, “A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis,” Biotechnology Letters, vol. 29, no. 10, pp. 1599–1603, 2007.
[38]  T. J. March, J. A. Able, C. J. Schultz, and A. J. Able, “A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains,” Proteomics, vol. 7, no. 20, pp. 3800–3808, 2007.
[39]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[40]  R. J. Pezza, G. V. Petukhova, R. Ghirlando, and R. D. Camerini-Otero, “Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex,” Journal of Biological Chemistry, vol. 281, no. 27, pp. 18426–18434, 2006.
[41]  K. H. P. Khoo, H. R. Jolly, and J. A. Able, “The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis,” Functional Plant Biology, vol. 35, no. 12, pp. 1267–1277, 2008.
[42]  A. E. Franklin, J. McElver, I. Sunjevaric, R. Rothstein, B. Bowen, and W. Zacheus Cande, “Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase,” Plant Cell, vol. 11, no. 5, pp. 809–824, 1999.
[43]  J. Felsenstein, “Confidence-limits on phylogenies—an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985.
[44]  E. Zuckerkandl and L. Pauling, “Evolutionary divergence and convergence in proteins,” in Evolving Genes and Proteins, V. Bryson and H. J. Vogel, Eds., pp. 97–166, Academic Press, New York, NY, USA, 1965.
[45]  M. Suzuki, “SPXX, a frequent sequence motif in gene regulatory proteins,” Journal of Molecular Biology, vol. 207, no. 1, pp. 61–84, 1989.
[46]  C. E. de Carvalho and M. P. Colaiácovo, “SUMO-mediated regulation of synaptonemal complex formation during meiosis,” Genes and Development, vol. 20, no. 15, pp. 1986–1992, 2006.
[47]  M. V. Katti, R. Sami-Subbu, P. K. Ranjekar, and V. S. Gupta, “Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications,” Protein Science, vol. 9, no. 6, pp. 1203–1209, 2000.
[48]  M. D. Yoder, S. E. Lietzke, and F. Jurnak, “Unusual structural features in the parallel β-helix in pectate lyases,” Structure, vol. 1, no. 4, pp. 241–251, 1993.
[49]  H. P. Phatnani and A. L. Greenleaf, “Phosphorylation and functions of the RNA polymerase II CTD,” Genes and Development, vol. 20, no. 21, pp. 2922–2936, 2006.
[50]  M. Carmo-Fonseca, L. Mendes-Soares, and I. Campos, “To be or not to be in the nucleolus,” Nature Cell Biology, vol. 2, no. 6, pp. E107–E112, 2000.
[51]  M. O. J. Olson, M. Dundr, and A. Szebeni, “The nucleolus: an old factory with unexpected capabilities,” Trends in Cell Biology, vol. 10, no. 5, pp. 189–196, 2000.
[52]  N. Jackson, E. Sanchez-Moran, E. Buckling, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis,” EMBO Journal, vol. 25, no. 6, pp. 1315–1323, 2006.
[53]  W. P. Pawlowski and W. Z. Cande, “Coordinating the events of the meiotic prophase,” Trends in Cell Biology, vol. 15, no. 12, pp. 674–681, 2005.
[54]  A. L. Eggler, R. B. Inman, and M. M. Cox, “The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39280–39288, 2002.
[55]  T. Nishinaka, A. Shinohara, Y. Ito, S. Yokoyama, and T. Shibata, “Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11071–11076, 1998.
[56]  K. Osman, E. Sanchez-Moran, J. D. Higgins, G. H. Jones, and F. C. H. Franklin, “Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex,” Chromosoma, vol. 115, no. 3, pp. 212–219, 2006.
[57]  D. von Wettstein, “The synaptonemal complex and genetic segregation,” Symposia of the Society for Experimental Biology, vol. 38, pp. 195–231, 1984.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413