全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Cotton-Fiber-Associated Cyclin-Dependent Kinase A Gene: Characterization and Chromosomal Location

DOI: 10.1155/2012/613812

Full-Text   Cite this paper   Add to My Lib

Abstract:

A cotton fiber cDNA and its genomic sequences encoding an A-type cyclin-dependent kinase (GhCDKA) were cloned and characterized. The encoded GhCDKA protein contains the conserved cyclin-binding, ATP binding, and catalytic domains. Northern blot and RT-PCR analysis revealed that the GhCDKA transcript was high in 5–10 DPA fibers, moderate in 15 and 20 DPA fibers and roots, and low in flowers and leaves. GhCDKA protein levels in fibers increased from 5–15 DPA, peaked at 15 DPA, and decreased from 15 t0 20 DPA. The differential expression of GhCDKA suggested that the gene might play an important role in fiber development. The GhCDKA sequence data was used to develop single nucleotide polymorphism (SNP) markers specific for the CDKA gene in cotton. A primer specific to one of the SNPs was used to locate the CDKA gene to chromosome 16 by deletion analysis using a series of hypoaneuploid interspecific hybrids. 1. Introduction Cotton fibers are unicellular seed trichomes differentiated from the outer integument of a developing seed. The regulation of cell division is thus an important aspect of fiber initiation and development. About 25% of commercial cotton ovule epidermal cells stops division and develops to produce fibers [1]. It has been reported that the cell cycle in fiber cells is arrested in the G1 phase during the early stages of fiber development [2]. A central role in the regulation of the cell division is played by cyclin-dependent kinases (CDKs) and their regulatory cyclin subunits [3–5]. Eleven types of cyclins (A, B, C, D, H, CycJ18, L, T, U, SDS (solo dancers), and P) have been identified in plants [6, 7]. Plant CDKs, identified in 23 species of algae, gymnosperms, and angiosperms, contain three functional domains: an ATP-binding domain, a cyclin-binding domain, and a catalytic domain. They are classified into five types (A, B, C, D, and E) based on their sequence differences in the cyclin-binding domain [8]. The A-type CDK (CDKA) proteins are characterized by the presence of the PSTAIRE motif, which is essential for cyclin binding [9]. Plant CDKAs, but not CDKBs, have been shown to complement yeast CDK mutants [10–13], suggesting that plant CDKAs are functional homologues of the yeast CDK. Plant CDKAs not only control cell cycle progression from the G1 to S phase and from the G2 to M phase [5, 14] but also participate in cell proliferation and maintenance of cell division competence in differentiated tissues during development [15]. Since the CDKA gene is expressed in both dividing and differential tissues [15, 16], it has been suggested that

References

[1]  J. Van't Hof and S. Saha, “Cotton fibers can undergo cell division,” American Journal of Botany, vol. 84, no. 9, pp. 1231–1235, 1997.
[2]  S. Saha and J. Van't Hof, “Cotton fiber cells are arrested at G1 stage,” Journal of New Seeds, vol. 7, no. 1, pp. 1–8, 2005.
[3]  W. Dewitte and J. A. H. Murray, “The plant cell cycle,” Annual Review of Plant Biology, vol. 54, pp. 235–264, 2003.
[4]  D. Inzé and L. De Veylder, “Cell cycle regulation in plant development,” Annual Review of Genetics, vol. 40, pp. 77–105, 2006.
[5]  V. Mironov, L. De Veylder, M. Van Montagu, and D. Inzé, “Cyclin-dependent kinases and cell division in plants—the nexus,” Plant Cell, vol. 11, no. 4, pp. 509–522, 1999.
[6]  G. Wang, H. Kong, Y. Sun et al., “Genome-wide analysis of the cyclin family in arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins,” Plant Physiology, vol. 135, no. 2, pp. 1084–1099, 2004.
[7]  J. A. Torres Acosta, J. de Almeida Engler, J. Raes et al., “Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins,” Cellular and Molecular Life Sciences, vol. 61, no. 12, pp. 1485–1497, 2004.
[8]  J. Joubès, C. Chevalier, D. Dudits et al., “CDK-related protein kinases in plants,” Plant Molecular Biology, vol. 43, no. 5-6, pp. 607–620, 2000.
[9]  B. Ducommun, P. Brambilla, M. A. Felix, B. R. Franza, E. Karsenti Jr., and G. Draetta, “Cdc2 phosphorylation is required for its interaction with cyclin,” EMBO Journal, vol. 10, no. 11, pp. 3311–3319, 1991.
[10]  J. Colasanti, M. Tyers, and V. Sundaresan, “Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3377–3381, 1991.
[11]  P. C. Ferreira, A. S. Hemerly, R. Villarroel, M. Van Montagu, and D. Inzé, “The Arabidopsis functional homolog of the p34cdc2 protein kinase,” Plant Cell, vol. 3, no. 5, pp. 531–540, 1991.
[12]  T. Hirayama, Y. Imajuku, T. Anai, M. Matsui, and A. Oka, “Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana,” Gene, vol. 105, no. 2, pp. 159–165, 1991.
[13]  H. Hirt, A. Páy, L. B?gre, I. Meskiene, and E. Heberle-Bors, “Cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants,” Plant Journal, vol. 4, no. 1, pp. 61–69, 1993.
[14]  Z. Magyar, T. Mészáros, P. Miskolczi et al., “Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells,” Plant Cell, vol. 9, no. 2, pp. 223–235, 1997.
[15]  M. Umeda, C. Umeda-Hara, M. Yamaguchi, J. Hashimoto, and H. Uchimiya, “Differential expression of genes for cyclin-dependent protein kinases in rice plants,” Plant Physiology, vol. 119, no. 1, pp. 31–40, 1999.
[16]  A. S. Hemerly, P. Ferreira, J. De Almeida Engler, M. Van Montagu, G. Engler, and D. Inze, “Cdc2a expression in Arabidopsis is linked with competence for cell division,” Plant Cell, vol. 5, no. 12, pp. 1711–1723, 1993.
[17]  M. Yamaguchi, H. Kato, S. Yoshida, S. Yamamura, H. Uchimiya, and M. Umeda, “Control of in vitro organogenesis by cyclin-dependent kinase activities in plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 8019–8023, 2003.
[18]  S. Adachi, N. Nobusawa, and M. Umeda, “Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana,” Developmental Biology, vol. 329, no. 2, pp. 306–314, 2009.
[19]  R. L. Barent and T. E. Elthon, “Two-dimensional gels: an easy method for large quantities of proteins,” Plant Molecular Biology Reporter, vol. 10, no. 4, pp. 338–344, 1992.
[20]  J. Z. Yu, R. Cantrell, R. Kohel, et al., “Establishment of the standardized cotton microsatellite database (CMD) panel,” in Proceedings of the Beltwide Cotton Improvement Conference, pp. 5–8, National Cotton Council, San Antonio, Tex, USA, January 2004.
[21]  S. Liu, S. Saha, D. Stelly, B. Burr, and R. G. Cantrell, “Chromosomal assignment of microsatellite loci in cotton,” Journal of Heredity, vol. 91, no. 4, pp. 326–331, 2000.
[22]  S. Saha, J. Wu, J. N. Jenkins et al., “Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits,” Journal of Cotton Science, vol. 8, no. 3, pp. 162–169, 2004.
[23]  Z. T. Buriev, S. Saha, I. Y. Abdurakhmonov et al., “Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in Upland cotton (Gossypium hirsutum L.),” Theoretical and Applied Genetics, vol. 120, no. 3, pp. 587–606, 2010.
[24]  K. Vandepoele, J. Raes, L. De Veylder, P. Rouzé, S. Rombauts, and D. Inzé, “Genome-wide analysis of core cell cycle genes in Arabidopsis,” Plant Cell, vol. 14, no. 4, pp. 903–916, 2002.
[25]  J. Joubès, T. H. Phan, D. Just et al., “Molecular and biochemical characterization of the involvement of cyclin-dependent kinase a during the early development of tomato fruit,” Plant Physiology, vol. 121, no. 3, pp. 857–869, 1999.
[26]  Y. Y. Setiady, M. Sekine, N. Hariguchi, H. Kouchi, and A. Shinmyo, “Molecular cloning and characterization of a cDNA clone that encodes a Cdc2 homolog from Nicotiana tabacum,” Plant and Cell Physiology, vol. 37, no. 3, pp. 369–376, 1996.
[27]  W. Krek and E. A. Nigg, “Structure and developmental expression of the chicken CDC2 kinase,” EMBO Journal, vol. 8, no. 10, pp. 3071–3078, 1989.
[28]  C. F. Lehner and P. H. O'Farrell, “Drosophila cdc2 homologs: a functional homolog is coexpressed with a cognate variant,” EMBO Journal, vol. 9, no. 11, pp. 3573–3581, 1990.
[29]  Y. Imajuku, Y. Ohashi, T. Aoyama, K. Goto, and A. Oka, “An upstream region of the Arabidopsis thaliana CDKA;1 (CDC2aAt) gene directs transcription during trichome development,” Plant Molecular Biology, vol. 46, no. 2, pp. 205–213, 2001.
[30]  C. Richard, C. Granier, D. Inzé, and L. De Veylder, “Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions,” Journal of Experimental Botany, vol. 52, no. 361, pp. 1625–1633, 2001.
[31]  G. Moore, “Cereal chromosome structure, evolution, and pairing,” Annual Review Plant Physiology and Plant Molecular Biology, vol. 51, pp. 195–222, 2000.
[32]  M. Thangavelu, A. B. James, A. Bankier, G. J. Bryan, P. H. Dear, and R. Waugh, “Happy mapping in plant genome: reconstruction and analysis of a high-resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4,” Plant Biotechnology Journal, vol. 1, no. 1, pp. 23–31, 2003.
[33]  B. E. Pfeil, C. L. Brubaker, L. A. Craven, and M. D. Crisp, “Paralogy and orthology in the malvaceae rpb2 gene family: Investigation of gene duplication in Hibiscus,” Molecular Biology and Evolution, vol. 21, no. 7, pp. 1428–1437, 2004.
[34]  J. T. Leiva-Neto, G. Grafi, P. A. Sabelli et al., “A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm,” Plant Cell, vol. 16, no. 7, pp. 1854–1869, 2004.
[35]  K. Sugimoto-Shirasu and K. Roberts, “Big it up: endoreduplication and cell-size control in plants,” Current Opinion in Plant Biology, vol. 6, no. 6, pp. 544–553, 2003.
[36]  B. A. Larkins, B. P. Dilkes, R. A. Dante, C. M. Coelho, Y. M. Woo, and Y. Liu, “Investigating the hows and whys of DNA endoreduplication,” Journal of Experimental Botany, vol. 52, no. 355, pp. 183–192, 2001.
[37]  N. Gonzalez, F. Gévaudant, M. Hernould, C. Chevalier, and A. Mouras, “The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit,” Plant Journal, vol. 51, no. 4, pp. 642–655, 2007.
[38]  D. M. Stelly, S. Saha, D. A. Raska, J. N. Jenkins, J. C. McCarty Jr., and O. A. Gutiérrez, “Registration of 17 upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions,” Crop Science, vol. 45, pp. 2663–2665, 2005.
[39]  J. E. Endrizzi, E. L. Turcotte, and R. J. Kohel, “Quantitative genetics, cytology and cytogenetics,” in Cotton, R. J. Kohel and C. F. Lewis, Eds., pp. 81–129, American Society of Agronomy, Madison, Wis, USA, 1984.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133