全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于IDA的主余震序列作用下RC框架易损性分析与生命周期费用评估

DOI: 10.13197/j.eeev.2015.04.206.xujf.024, PP. 206-212

Keywords: 主余震,IDA,易损性分析,费用评估

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于IDA方法对一实际6层钢筋混凝土框架进行易损性分析,结果表明结构在主余震协同作用下的失效概率会显著增加,需要在设计中考虑余震。进一步假定设计时采用增加钢支撑的方式应对主余震序列型地震动,研究了加撑后框架结构的易损性并对两类结构在生命周期内的总费用进行了评估。评估结果表明,在设计中采用增加钢支撑的方式来应对主余震序列型地震动虽然会增加结构的初始投资,但会降低结构整个生命周期内的总费用。

References

[1]  Mahin S A. Effects of duration and aftershocks on inelastic design earthquakes[C]// Proceedings of the Seventh World Conference on Earthquake Engineering, Istanbul. 1980, 5: 677-80.
[2]  吴波, 欧进萍. 钢筋砼结构在主余震作用下的反应与损伤分析[J]. 建筑结构学报, 1993, 14(5): 45-53. WU Bo, OU Jinping. The respond and damage analysis of RC structures under mainshock-aftershock sequences [J]. Journal of Building Structures,1993, 14(5): 45-53.(in Chinese)
[3]  Ryu H, Luco N, Uma S R, et al. Developing fragilities for mainshock-damaged structures through incremental dynamic analysis[C]//Ninth Pacific Conference on Earthquake Engineering, Auckland, New Zealand. 2011.
[4]  武坤芳. 基于主余震序列型地震动的RC框架结构易损性分析及应用[D]. 哈尔滨: 哈尔滨工业大学, 2012. WU Kunfang. The fragility analysis and application of RC frame structure based on mainshock-aftershock sequences-type ground motions[D]. Harbin: Harbin Institute of Technology, 2012.(in Chinese)
[5]  Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics,2002, 31(3): 491-514.
[6]  Bertero V V. Strength and deformation capacities of buildings under extreme environments[J]. Structural engineering and structural mechanics, 1977, 53(1): 29-79.
[7]  FEMA. Recommended seismic design criteria for new steel moment-frame buildings[R]. Washington DC: SAC Joint Venture, Federal Emergency Management Agency, 2000.
[8]  FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings[R]. Washington DC: SAC Joint Venture, Federal Emergency Management Agency, 2000.
[9]  Frangopol D M, Lin K Y, Estes A C. Life-cycle cost design of deteriorating structures[J]. Journal of Structural Engineering, ASCE, 1997, 123(10): 1390-1401.
[10]  Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria. II: applications[J]. Journal of Structural Engineering, ASCE, 2001, 127(3): 338-346.
[11]  Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria. I: methodology[J]. Journal of Structural Engineering, ASCE, 2001, 127(3): 330-337.
[12]  赵昕, 余天意. 基于风振舒适度的高层建筑生命周期费用模型[J]. 同济大学学报: 自然科学版, 2013, 41(12): 1793-1798. ZHAO Xin, YU Tianyi. Human comfort performance-based life cycle cost model of high-rise structures under wind load[J]. Journal of Tongji University: Natural Science, 2013, 41(12): 1793-1798.(in Chinese)
[13]  Ruiz-García J, Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2): 621-634.
[14]  Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739.
[15]  FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings[S]. Washington D C,2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133