全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reconstruction of Sugar Metabolic Pathways of Giardia lamblia

DOI: 10.1155/2012/980829

Full-Text   Cite this paper   Add to My Lib

Abstract:

Giardia lamblia is an “important” pathogen of humans, but as a diplomonad excavate it is evolutionarily distant from other eukaryotes and relatively little is known about its core metabolic pathways. KEGG, the widely referenced site for providing information of metabolism, does not yet include many enzymes from Giardia species. Here we identify Giardia’s core sugar metabolism using standard bioinformatic approaches. By comparing Giardia proteomes with known enzymes from other species, we have identified enzymes in the glycolysis pathway, as well as some enzymes involved in the TCA cycle and oxidative phosphorylation. However, the majority of enzymes from the latter two pathways were not identifiable, indicating the likely absence of these functionalities. We have also found enzymes from the Giardia glycolysis pathway that appear more similar to those from bacteria. Because these enzymes are different from those found in mammals, the host organisms for Giardia, we raise the possibility that these bacteria-like enzymes could be novel drug targets for treating Giardia infections. 1. Introduction Giardia lamblia is a major cause of human waterborne diarrheal disease, infecting an estimated 10% of the world’s population during their lifetime [1]. Infection is by fecal-oral transmission and is initiated by ingestion of infectious cysts in contaminated water or through person-to-person contact. After excystation, flagellated trophozoites colonize the upper small intestine where they attach to the epithelial lining but do not invade the mucosa. Around 50% of Giardia infections are asymptomatic, in others the major symptoms of Giardia infection include diarrhea, with malabsorption, dehydration, weight loss, cognitive impairment in children, and chronic fatigue in adults as well as other symptoms [2]. One of the main drugs for treating Giardia infection is metronidazole (Mz) [3, 4]. However, Mz treatment fails in about 20% of patients [5] and there are other issues including developing resistance from Giardia [2]; moreover, Mz is inactive against Giardia cysts [6]. The discovery and development of new therapeutics are important to expand the arsenal for controlling parasitic infection. Typically a drug target is a key molecule involved in a metabolic or signalling pathway that is specific to a disease condition or pathology, or to the infectivity or survival of a microbial pathogen [7]. Since Giardia is a parasite with limited metabolic diversity, a better understanding of its metabolic pathways is important to the discovery of new drug targets. Although it has

References

[1]  D. B. Huang and A. C. White, “An updated review on Cryptosporidium and Giardia,” Gastroenterology Clinics of North America, vol. 35, no. 2, pp. 291–314, 2006.
[2]  L. A. Dunn, A. G. Burgess, K. G. Krauer et al., “A new-generation 5-nitroimidazole can induce highly metronidazole-resistant Giardia lamblia in vitro,” International Journal of Antimicrobial Agents, vol. 36, no. 1, pp. 37–42, 2010.
[3]  J. Harris, S. Plummer, and D. Lloyd, “Antigiardial drugs,” Applied Microbiology and Biotechnology, vol. 57, no. 5-6, pp. 614–619, 2001.
[4]  C. A. Valdez, J. C. Tripp, Y. Miyamoto et al., “Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia,” Journal of Medicinal Chemistry, vol. 52, no. 13, pp. 4038–4053, 2009.
[5]  P. Upcroft and J. A. Upcroft, “Drug targets and mechanisms of resistance in the anaerobic protozoa,” Clinical Microbiology Reviews, vol. 14, no. 1, pp. 150–164, 2001.
[6]  R. D. Adam, “Biology of Giardia lamblia,” Clinical Microbiology Reviews, vol. 14, no. 3, pp. 447–475, 2001.
[7]  V. S. Rao and K. Srinivas, “Modern drug discovery process: an in silico approach,” Journal of Bioinformatics and Sequence Analysis, vol. 2, pp. 89–94, 2011.
[8]  X. S. Chen, W. T. J. White, L. J. Collins, and D. Penny, “Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis,” PLoS ONE, vol. 3, no. 8, Article ID e3106, 2008.
[9]  X. W. Chen, L. J. Collins, P. J. Biggs, and D. Penny, “High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis,” Genome Biology and Evolution, vol. 1, pp. 165–175, 2009.
[10]  H. G. Morrison, A. G. McArthur, F. D. Gillin et al., “Genomic minimalism in the early diverging intestinal parasite Giardia lamblia,” Science, vol. 317, no. 5846, pp. 1921–1926, 2007.
[11]  M. Kanehisa, S. Goto, M. Hattori et al., “From genomics to chemical genomics: new developments in KEGG,” Nucleic Acids Research, vol. 34, pp. D354–D357, 2006.
[12]  KEGG KEGG encyclopedia, http://www.genome.jp/kegg/kegg2.html.
[13]  P. Dolezal, O. Smid, P. Rada et al., “Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 10924–10929, 2005.
[14]  P. L. Jedelsky, P. Dole?al, P. Rada et al., “The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis,” PLoS ONE, vol. 6, no. 2, Article ID e17285, 2011.
[15]  V. V. Emelyanov and A. V. Goldberg, “Fermentation enzymes of Giardia intestinalis, pyruvate: ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes,” Microbiology, vol. 157, no. 6, pp. 1602–1611, 2011.
[16]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[17]  S. Mitra, J. Cui, P. W. Robbins, and J. Samuelson, “A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities,” Glycobiology, vol. 20, no. 10, pp. 1233–1240, 2010.
[18]  (NCBI) NCfBI, 2012, http://www.ncbi.nlm.nih.gov/guide/.
[19]  M. Dan and C. C. Wang, “Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia,” Molecular and Biochemical Parasitology, vol. 109, no. 1, pp. 25–36, 2000.
[20]  L. B. Sánchez, “Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia,” Archives of Biochemistry and Biophysics, vol. 354, no. 1, pp. 57–64, 1998.
[21]  T. A. Paget, M. L. Kelly, E. L. Jarroll, D. G. Lindmark, and D. Lloyd, “The effects of oxygen on fermentation in Giardia lamblia,” Molecular and Biochemical Parasitology, vol. 57, no. 1, pp. 65–71, 1993.
[22]  R. B. Ladeira, M. A. R. Freitas, E. F. Silva, N. F. Gontijo, and M. A. Gomes, “Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia,” Parasitology Research, vol. 96, no. 6, pp. 418–421, 2005.
[23]  E. Hilario and J. P. Gogarten, “The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits,” Journal of Molecular Evolution, vol. 46, no. 6, pp. 703–715, 1998.
[24]  G. Unden and J. Bongaerts, “Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors,” Biochimica et Biophysica Acta, vol. 1320, no. 3, pp. 217–234, 1997.
[25]  K. L. Adams and J. D. Palmer, “Evolution of mitochondrial gene content: gene loss and transfer to the nucleus,” Molecular Phylogenetics and Evolution, vol. 29, no. 3, pp. 380–395, 2003.
[26]  J. O. Andersson, ?. M. Sj?gren, L. A. M. Davis, T. M. Embley, and A. J. Roger, “Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes,” Current Biology, vol. 13, no. 2, pp. 94–104, 2003.
[27]  A. H. Romano and T. Conway, “Evolution of carbohydrate metabolic pathways,” Research in Microbiology, vol. 147, no. 6-7, pp. 448–455, 1996.
[28]  H. Hartman and A. Fedorov, “The origin of the eukaryotic cell: a genomic investigation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1420–1425, 2002.
[29]  C. G. Kurland, L. J. Collins, and D. Penny, “Genomics and the irreducible nature of eukaryote cells,” Science, vol. 312, no. 5776, pp. 1011–1014, 2006.
[30]  F. M. Matschinsky, “Assessing the potential of glucokinase activators in diabetes therapy,” Nature Reviews Drug Discovery, vol. 8, no. 5, pp. 399–416, 2009.
[31]  C. L. Byington, R. L. Dunbrack, F. G. Whitby, F. E. Cohen, and N. Agabian, “Entamoeba histolytica: computer-assisted modeling of phosphofructokinase for the prediction of broad-spectrum antiparasitic agents,” Experimental Parasitology, vol. 87, no. 3, pp. 194–202, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413