全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SELDI-TOF-MS Serum Profiling Reveals Predictors of Cardiac MRI Changes in Marathon Runners

DOI: 10.1155/2012/679301

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. To utilize proteomics to discover proteins associated with significant cardiac magnetic resonance imaging (MRI) changes in marathon runners. Methods. Serum from 25 runners was analyzed by surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Proteomic profiles were compared in serum samples obtained prior to the race, at the finish line and within 7 hours after race to identify dynamic proteins correlated with cardiac MRI changes. Results. 693 protein/peptide clusters were identified using two ProteinChip surface chemistries and, of these, 116 were significantly different between the three time points. We identified 7 different patterns of protein expression change within the runners and 5 prerace protein peaks, 16 finish-line protein levels, and 15 postrace proteins which were correlated with significant postrace cardiac MRI changes. Conclusions. This study has identified baseline levels of proteins which may be predictive of risk of significant cardiac damage following a marathon race. Preliminary identification of the significant proteins suggested the involvement of cytokines and other proteins involved in stress and inflammatory response. 1. Introduction A central paradox of physical activity is the association of moderate exercise with decreased cardiovascular morbidity and mortality [1, 2], whereas vigorous physical exertion increases the short-term risk of sudden cardiac death [3, 4]. Due to the rising participation in endurance sports, there is much current interest in postexercise changes in cardiac function [5]. Ever since the first marathon runner, Phidippides, collapsed and died at the finish of his famous run in ancient Greece, death due to heart-related stress has been an occasional occurrence in marathon events. Sudden unexpected death during marathons and other high impact activities is usually due to underlying and often unsuspected heart disease [6–8] and such catastrophes often attract substantial public attention [9]. Identification of marathon runners at risk is difficult, and the need for medical examinations remains controversial [2, 10, 11]. The risk of sudden cardiac death associated with marathon running has been suggested to be too low to recommend routine screening for coronary artery disease [12, 13]. An alternative approach to cardiac screening is to identify biomarkers which may predispose runners to increased risk of cardiac events. Many physical and biochemical changes have been described during endurance sports including transient changes in systolic and more persistent

References

[1]  L. Sandvik, J. Erikssen, E. Thaulow, G. Erikssen, R. Mundal, and K. Rodahl, “Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men,” New England Journal of Medicine, vol. 328, no. 8, pp. 533–537, 1993.
[2]  P. D. Thompson, B. A. Franklin, G. J. Balady et al., “Exercise and acute cardiovascular events: placing the risks into perspective a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology,” Circulation, vol. 115, no. 17, pp. 2358–2368, 2007.
[3]  C. M. Albert, M. A. Mittleman, C. U. Chae, I. M. Lee, C. H. Hennekens, and J. E. Manson, “Triggering of sudden death from cardiac causes by vigorous exertion,” New England Journal of Medicine, vol. 343, no. 19, pp. 1355–1361, 2000.
[4]  B. J. Maron, “The paradox of exercise,” New England Journal of Medicine, vol. 343, no. 19, pp. 1409–1411, 2000.
[5]  J. M. Scott and D. E. R. Warburton, “Mechanisms underpinning exercise-induced changes in left ventricular function,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1400–1407, 2008.
[6]  R. T. Jackson, R. Beaglehole, and N. Sharpe, “Sudden death in runners,” New Zealand Medical Journal, vol. 96, no. 730, pp. 289–292, 1983.
[7]  D. S. Siscovick, N. S. Weiss, R. H. Fletcher, and T. Lasky, “The incidence of primary cardiac arrest during vigorous exercise,” New England Journal of Medicine, vol. 311, no. 14, pp. 874–877, 1984.
[8]  P. D. Thompson, M. P. Stern, and P. Williams, “Death during jogging or running. A study of 18 cases,” Journal of the American Medical Association, vol. 242, no. 12, pp. 1265–1267, 1979.
[9]  B. J. Maron, P. D. Thompson, J. C. Puffer et al., “Cardiovascular preparticipation screening of competitive athletes: a statement for health professionals from the Sudden Death Committee (Clinical cardiology) and Congenital Cardiac Defects Committee (Cardiovascular disease in the young), American Heart Association,” Circulation, vol. 94, no. 4, pp. 850–856, 1996.
[10]  B. J. Maron, P. S. Douglas, T. P. Graham, R. A. Nishimura, and P. D. Thompson, “Task Force 1: preparticipation screening and diagnosis of cardiovascular disease in athletes,” Journal of the American College of Cardiology, vol. 45, no. 8, pp. 1322–1326, 2005.
[11]  B. J. Maron, P. D. Thompson, M. J. Ackerman et al., “Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 Update: a scientific statement from the American Heart Association council on nutrition, physical activity, and metabolism: endorsed by the American College of Cardiology foundation,” Circulation, vol. 115, no. 12, pp. 1643–1655, 2007.
[12]  B. J. Maron, L. C. Poliac, and W. O. Roberts, “Risk for sudden cardiac death associated with marathon running,” Journal of the American College of Cardiology, vol. 28, no. 2, pp. 428–431, 1996.
[13]  W. O. Roberts and B. J. Maron, “Evidence for decreasing occurrence of sudden cardiac death associated with the marathon,” Journal of the American College of Cardiology, vol. 46, no. 7, pp. 1373–1374, 2005.
[14]  P. S. Douglas, M. L. O'Toole, W. D. B. Hiller, K. Hackney, and N. Reichek, “Cardiac fatigue after prolonged exercise,” Circulation, vol. 76, no. 6, pp. 1206–1213, 1987.
[15]  T. G. Neilan, D. M. Yoerger, P. S. Douglas et al., “Persistent and reversible cardiac dysfunction among amateur marathon runners,” European Heart Journal, vol. 27, no. 9, pp. 1079–1084, 2006.
[16]  R. Shave, K. George, G. Whyte, E. Hart, and N. Middleton, “Postexercise changes in left ventricular function: the evidence so far,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1393–1399, 2008.
[17]  E. B. Fortescue, A. Y. Shin, D. S. Greenes et al., “Cardiac troponin increases among runners in the Boston Marathon,” Annals of Emergency Medicine, vol. 49, no. 2, pp. 137–143, 2007.
[18]  J. Scharhag, K. George, R. Shave, A. Urhausen, and W. Kindermann, “Exercise-associated increases in cardiac biomarkers,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1408–1415, 2008.
[19]  L. Tulloh, D. Robinson, A. Patel et al., “Raised troponin T and echocardiographic abnormalities after prolonged strenuous exercise—the Australian ironman triathlon,” British Journal of Sports Medicine, vol. 40, no. 7, pp. 605–609, 2006.
[20]  A. Niessner, S. Ziegler, J. Slany, E. Billensteiner, W. Woloszczuk, and G. Geyer, “Increases in plasma levels of atrial and brain natriuretic peptides after running a marathon: are their effects partly counterbalanced by adrenocortical steroids?” European Journal of Endocrinology, vol. 149, no. 6, pp. 555–559, 2003.
[21]  A. J. Saenz, E. Lee-Lewandrowski, M. J. Wood et al., “Measurement of a plasma stroke biomarker panel and cardiac troponin T in marathon runners before and after the 2005 Boston Marathon,” American Journal of Clinical Pathology, vol. 126, no. 2, pp. 185–189, 2006.
[22]  E. Dursun, E. Monari, A. Cuoghi et al., “Proteomic profiling during atherosclerosis progression using SELDI-TOF-MS: effect of darbepoetin treatment,” Acta Histochemica, vol. 112, no. 5, pp. 432–443, 2010.
[23]  Y. Hou, M. C. Le Bihan, D. Vega-Avelaira, and G. R. Coulton, “Proteomic changes in hearts of kyphoscoliosis (ky) mutant mice in the absence of structural pathology: implication for the analysis of early human heart disease,” Proteomics, vol. 6, no. 10, pp. 3096–3108, 2006.
[24]  E. Peronnet, L. Becquart, F. Poirier, M. Cubizolles, G. Choquet-Kastylevsky, and C. Jolivet-Reynaud, “SELDI-TOF MS analysis of the Cardiac Troponin I forms present in plasma from patients with myocardial infarction,” Proteomics, vol. 6, no. 23, pp. 6288–6299, 2006.
[25]  J. E. Trivax, B. A. Franklin, J. A. Goldstein et al., “Acute cardiac effects of marathon running,” Journal of Applied Physiology, vol. 108, no. 5, pp. 1148–1153, 2010.
[26]  E. P. Diamandis, “Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics?” Clinical Chemistry, vol. 49, no. 8, pp. 1272–1275, 2003.
[27]  D. C. Nieman, D. A. Henson, L. L. Smith et al., “Cytokine changes after a marathon race,” Journal of Applied Physiology, vol. 91, no. 1, pp. 109–114, 2001.
[28]  K. Suzuki, S. Nakaji, M. Yamada et al., “Impact of a competitive marathon race on systemic cytokine and neutrophil responses,” Medicine and Science in Sports and Exercise, vol. 35, no. 2, pp. 348–355, 2003.
[29]  I. K. M. Brenner, V. M. Natale, P. Vasiliou, A. I. Moldoveanu, P. N. Shek, and R. J. Shephard, “Impact of three different types of exercise on components of the inflammatory response,” European Journal of Applied Physiology and Occupational Physiology, vol. 80, no. 5, pp. 452–460, 1999.
[30]  K. Suzuki, S. Nakaji, M. Yamada, M. Totsuka, K. Sato, and K. Sugawara, “Systemic inflammatory response to exhaustive exercise. Cytokine kinetics,” Exercise immunology review, vol. 8, pp. 6–48, 2002.
[31]  H. Bruunsgaard, H. Galbo, J. Halkjaer-Kristensen, T. L. Johansen, D. A. MacLean, and B. K. Pedersen, “Exercise-induced increase in serum inferleukin-6 in humans is related to muscle damage,” Journal of Physiology, vol. 499, no. 3, pp. 833–841, 1997.
[32]  G. Camus, J. Poortmans, M. Nys et al., “Mild endotoxaemia and the inflammatory response induced by a marathon race,” Clinical Science, vol. 92, no. 4, pp. 415–422, 1997.
[33]  B. K. Pedersen, A. Steensberg, C. Fischer, C. Keller, K. Ostrowski, and P. Schjerling, “Exercise and cytokines with particular focus on muscle-derived il-6,” Exercise Immunology Review, vol. 7, pp. 18–31, 2001.
[34]  H. Sprenger, C. Jacobs, M. Nain et al., “Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running,” Clinical Immunology and Immunopathology, vol. 63, no. 2, pp. 188–195, 1992.
[35]  K. Suzuki, M. Totsuka, S. Nakaji et al., “Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage,” Journal of Applied Physiology, vol. 87, no. 4, pp. 1360–1367, 1999.
[36]  A. Margeli, K. Skenderi, M. Tsironi, et al., “Dramatic elevations of interleukin-6 and acute-phase reactants in athletes participating in the ultradistance foot race spartathlon: severe systemic inflammation and lipid and lipoprotein changes in protracted exercise,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 3914–3918, 2005.
[37]  T. C. Poon, “Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices,” Expert Review of Proteomics, vol. 4, no. 1, pp. 51–65, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133