全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Population Ageing and Socially Assistive Robots for Elderly Persons: The Importance of Sociodemographic Factors for User Acceptance

DOI: 10.1155/2012/829835

Full-Text   Cite this paper   Add to My Lib

Abstract:

Taking care of older adults is among the major challenges currently faced by ageing populations. Researchers, designers, and engineers have proposed socially assistive robots as one way of helping elderly people stay in their homes longer. In a systematic literature review, this paper wants to investigate if and how evaluations of the acceptance of socially assistive robots by older people take into account sociodemographic factors. The results indicate that this only holds true for a few studies. Research that incorporates age, gender, education, and so forth; clearly shows that these key factors have a significant impact. However, the relations are complex and experience with technology mitigates the influence of sociodemographic factors on acceptance. Assistive devices should be adaptable to individual needs to be able to consider all these factors. 1. Introduction Demographic changes have accelerated population ageing, which, in turn, has an impact on the care of older persons. In view of the increasing demand for care personnel, societies around the world have to find strategies for dealing with these challenges [1]. According to researchers, designers, engineers, and other experts, assistive technologies nowadays permit older persons to live independently in their home longer [2]. Support ranges from telecare/smart homes, proactive service systems, and household robots to robot-assisted therapy and socially assistive robots [3]. Surveillance systems can detect when a person falls down, test the blood pressure, recognise severe breathing or heart problems, and immediately warn a caregiver. Interactive robots cooperate with people through bidirectional communication and provide personal assistance with everyday activities such as reminding older persons to take their medication, help them prepare food, eat, and wash [2]. These technological devices collaborate with nursing staff and family members to form a life support network for older persons by offering emotional and physical relief [4]. Japan is deemed to be the first country where population ageing will become relevant in the near future (its old-age dependency ratio is estimated to reach 76% by 2050). To cope with this situation, the Japanese government wants to introduce a nationwide system of robotic assistive technologies for aged care and heavily invests into the development of so-called service and health-care robots. This is documented by research agendas, roadmaps, and visions of Japanese institutions and ministries. In Europe, investments into assistive devices (financed within the

References

[1]  W. Lutz, W. Sanderson, and S. Scherbov, “The coming acceleration of global population ageing,” Nature, vol. 451, no. 7179, pp. 716–719, 2008.
[2]  E. Broadbent, R. Stafford, and B. MacDonald, “Acceptance of healthcare robots for the older population: review and future directions,” International Journal of Social Robotics, vol. 1, pp. 319–330, 2009.
[3]  K. Wada, T. Shibata, T. Saito, and K. Tanie, “Effects of robot assisted activity to elderly people who stay at a health service facility for the aged,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 2847–2852, 2003.
[4]  J. Sasaki, K. Yamada, M. Tanaka, and Y. Funyu, “An experiment of the life support network for elderly people living in a rural area,” in Proceedings of the 7th WSEAS International Conference on Applied Computer Science, vol. 7, pp. 316–321, World Scientific and Engineering Academy and Society (WSEAS), Venice, Italy, 2007.
[5]  Computing Community Consortium, A Roadmap for Us Robotics: From Internet to Robotics, CRA Computing Research Association, 2009.
[6]  W. C. Sanderson and S. Scherbov, “Remeasuring aging,” Science, vol. 329, no. 5997, pp. 1287–1288, 2010.
[7]  L. B. M. Neven, “Representations of the old and ageing in the design of the new and emerging: assessing the design of ambient intelligence technologies for older people,” Enschede, p. 228, 2011.
[8]  N. Oudshoorn and T. Pinch, “Introduction: how users and non-users matter,” in How Users Matter; The Co-Construction of Users and Technologies, N. P. Oudshoorn and T. Pinch, Eds., MIT Press, Cambridge, Mass, USA, 2003.
[9]  A. Peine and L. Neven, “Social-structural lag revisited,” Gerontechnology, vol. 10, no. 3, pp. 129–139, 2011.
[10]  M. Akrich, “The de-scription of technical objects,” in Shaping Technology/Building Society: Studies in Sociotechnical Change, W. L. Bijker, Ed., pp. 205–224, MIT Press, Cambridge, Mass, USA, 1992.
[11]  B. Latour, Pandora's Hope: Essays on the Reality of Science Studies, Harvard University Press, Cambridge, Mass, USA, 1999.
[12]  N. Oudshoorn, “Genderscripts in technnologie. Noodlot of uitdaging?” Tijdschrift voor Vrouwenstudies, vol. 17, pp. 350–367, 1996.
[13]  N. Oudshoorn, The Male Pill, a Biography of a Technology in the Making, Duke University Press, London, UK, 2003.
[14]  E. V. Oost, “Materializes gender: how shavers configure the users' femininity and masculinity,” in How Users Matter; The Co-Construction of Users and Technologies, N. P. Oudshoorn and P. Trevor, Eds., MIT Press, Cambridge, Mass, USA, 2003.
[15]  G. Fourez, “Scientific and technological literacy as a social practice,” Social Studies of Science, vol. 27, no. 6, pp. 903–936, 1997.
[16]  S. Petrina, “Politics of technological literacy,” International Journal of Technology and Design Education, vol. 10, no. 2, pp. 181–206, 2000.
[17]  J. Broekens, M. Heerink, and H. Rosendal, “Assistive social robots in elderly care: a review,” Gerontechnology, vol. 8, pp. 94–103, 2009.
[18]  D. Feil-Seifer and M. J. Mataric, “Defining socially assistive robotics,” in Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, Chicago, Ill, USA, 2005.
[19]  K. Wada and T. Shibata, “Living with seal robots—its sociopsychological and physiological influences on the elderly at a care house,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 972–980, 2007.
[20]  K. Wada and T. Shibata, “Social and physiological influences of robot therapy in a care house,” Interaction Studies, vol. 9, no. 2, pp. 258–276, 2008.
[21]  K. Wada, T. Shibata, T. Musha, and S. Kimura, “Robot therapy for elders affected by dementia,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, no. 4, pp. 53–60, 2008.
[22]  T. Nomura, “Consideration of mental therapeutic robots from psychological and sociological perspectives,” in Laboratories AIRaC, Department of Media Informatics, Ryukoku University, Kyoto, Japan, 2006.
[23]  A. Haasch, S. Hohenner, S. Hüwel, et al., “Biron—the bielefeld robot companion,” in Proceedings of the International Workshop on Advances in Service Robots, Stuttgart, Germany, 2004.
[24]  J. M. Beer, A. Prakash, T. L. Mitzner, and W. A. Rogers, “Understanding robot acceptance,” in Technology GIo, School of Psychology, Human Factors and Aging Laboratory, Atlanta, Ga, USA, 2010.
[25]  S. G. Green, M. B. Gavin, and L. Aiman-Smith, “Assessing a multidimensional measure of radical technological innovation,” IEEE Transactions on Engineering Management, vol. 42, no. 3, pp. 203–214, 1995.
[26]  R. D. Dewar and J. E. Dutton, “The adoption of radical and incremental innovations—an empirical-analysis,” Management Science, vol. 32, pp. 1422–1433, 1986.
[27]  F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” Management Information Systems, vol. 13, no. 3, pp. 319–339, 1989.
[28]  V. Venkatesh and F. D. Davis, “Theoretical extension of the technology acceptance model: four longitudinal field studies,” Management Science, vol. 46, no. 2, pp. 186–204, 2000.
[29]  V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: oward a unified view,” Management Information Systems, vol. 27, no. 3, pp. 425–478, 2003.
[30]  R. P. Bagozzi, F. D. Davis, and P. R. Warshaw, “Development and test of a theory of technological learning and usage,” Human Relations, vol. 45, pp. 659–686, 1992.
[31]  H. Sun and P. Zhang, “The role of moderating factors in user technology acceptance,” International Journal of Human Computer Studies, vol. 64, no. 2, pp. 53–78, 2006.
[32]  T. L. Mitzner, J. B. Boron, C. B. Fausset et al., “Older adults talk technology: technology usage and attitudes,” Computers in Human Behavior, vol. 26, no. 6, pp. 1710–1721, 2010.
[33]  J. A. G. M. van Dijk, “Digital divide research, achievements and shortcomings,” Poetics, vol. 34, no. 4-5, pp. 221–235, 2006.
[34]  S. J. Czaja, N. Charness, A. D. Fisk et al., “Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE),” Psychology and Aging, vol. 21, no. 2, pp. 333–352, 2006.
[35]  V. Venkatesh and M. G. Morris, “Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior,” Management Information Systems, vol. 24, no. 1, pp. 115–136, 2000.
[36]  M. Fishbein and I. Ajzen, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research, Addison-Wesley, Reading, Mass, USA, 1975.
[37]  R. D. Ellis and J. C. Allaire, “Modeling computer interest in older adults: the role of age, education, computer knowledge, and computer anxiety,” Human Factors, vol. 41, no. 3, pp. 345–355, 1999.
[38]  R. Bemelmans, G. J. Gelderblom, P. Jonker, and L. Witte, “The potential of socially assistive robotics in care for elderly, a systematic review,” in Human-Robot Personal Relationships, M. H. Lamers and F. J. Verbeek, Eds., vol. 59, pp. 83–89, Springer, Berlin, Germany, 2011.
[39]  R. Bemelmans, G. J. Gelderblom, P. Jonker, and L. de Witte, “Socially assistive robots in elderly care: a systematic review into effects and effectiveness,” Journal of the American Medical Directors Association, vol. 13, no. 2, pp. 114–120, 2012.
[40]  M. V. Giuliani, M. Scopelliti, and F. Fornara, “Coping strategies and technology in later life,” in Proceedings of the Symposium on Robot Companions SSAISB Convention, pp. 46–53, Hatfield, UK, 2005.
[41]  M. V. Giuliani, M. Scopelliti, and F. Fornara, “Elderly people at home: technological help in everyday activities,” in Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication, vol. 2005, pp. 365–370, Nashville, Tenn, USA, 2005.
[42]  C. McCreadie and A. Tinker, “The acceptability of assistive technology to older people,” Ageing and Society, vol. 25, no. 1, pp. 91–110, 2005.
[43]  M. Scopelliti, M. V. Giuliani, and F. Fornara, “Robots in a domestic setting: a psychological approach,” Universal Access in the Information Society, vol. 4, no. 2, pp. 146–155, 2005.
[44]  L. Neven, “'But obviously not for me': robots, laboratories and the defiant identity of elder test users,” Sociology of Health and Illness, vol. 32, no. 2, pp. 335–347, 2010.
[45]  K. O. Arras and D. Cerqui, “Do we want to share our lives and bodies with robots?” Tech. Rep. 0605-001, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2005.
[46]  S. Gaul, W. Wilkowska, and M. Ziefle, “Accounting for user diversity in the acceptance of medical assistive technologies,” in Proceedings of the 3rd International ICST Conference on Electronic Healthcare for the 21st Century, Casablanca, Morocco, 2010.
[47]  I. H. Kuo, J. M. Rabindran, E. Broadbent et al., “Age and gender factors in user acceptance of healthcare robots,” in Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive (ROMAN '09), pp. 214–219, Toyama, Japan, October 2009.
[48]  M. Heerink, B. Kr?se, V. Evers, and B. Wielinga, “Studying the acceptance of a robotic agent by elderly users,” International Journal of Assistive Robotics and Mechatronics, vol. 7, pp. 33–42, 2006.
[49]  M. Heerink, B. Kr?se, V. Evers, and B. Wielinga, “Assessing acceptance of assistive social agent technology by older adults: the almere model,” International Journal of Social Robotics, vol. 2, pp. 361–375, 2010.
[50]  M. Heerink, B. Kr?se, B. Wielinga, and V. Evers, “Enjoyment intention to use and actual use of a conversational robot by elderly people,” in Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI '08), pp. 113–119, March 2008.
[51]  M. Heerink, B. Kr?se, V. Evers, and B. Wielinga, “The influence of social presence on acceptance of a companion robot by older people,” Journal of Physical Agents, vol. 2, pp. 33–40, 2008.
[52]  M. Heerink, B. Kr?se, V. Evers, and B. Wielinga, “Observing conversational expressiveness of elderly users interacting with a robot and screen agent,” in Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics (ICORR '07), pp. 751–756, Noordwijk, The Netherlands, June 2007.
[53]  M. Heerink, B. Kr?se, V. Evers, and B. Wielinga, “The influence of a robot’s social abilities on acceptance by elderly users,” in Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN '06), pp. 521–526, Hertfordshire, UK, 2006.
[54]  M. Heerink, “Exploring the influence of age, gender, education and computer experience on robot acceptance by older adults,” in Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI '11), pp. 147–148, Lausanne, Switzerland, 2011.
[55]  P. Schermerhorn, M. Scheutz, and C. R. Crowell, “Robot social presence and gender: do females view robots differently than males?” in Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI '08), pp. 263–270, Amsterdam, The Netherlands, March 2008.
[56]  W. H. Courtenay, “Constructions of masculinity and their influence on men's well-being: a theory of gender and health,” Social Science and Medicine, vol. 50, no. 10, pp. 1385–1401, 2000.
[57]  I. Waldron, “Trends in gender differences in mortality: relationships to changing gender differences in behaviour and other causal factors,” in Gender Inequality in Health, E. Annandale and K. Hunt, Eds., pp. 150–181, Open University Press, Buckingham, UK, 2000.
[58]  P. Flandorfer and K. Fliegenschnee, “The gender gap in life expectancy in Austria: theoretical considerations based on a qualitative grounded theory study,” Journal of Public Health, vol. 19, no. 5, pp. 481–494, 2011.
[59]  P. Flandorfer, C. Wegner, and I. Buber, “Gender roles and smoking behaviour,” VID Working Paper, pp. 1–25, 2010.
[60]  L. M. Verbrugge, “Gender and health: an update on hypotheses and evidence,” Journal of Health and Social Behavior, vol. 26, no. 3, pp. 156–182, 1985.
[61]  N. Krieger, “Genders, sexes, and health: what are the connections—and why does it matter?” International Journal of Epidemiology, vol. 32, no. 4, pp. 652–657, 2003.
[62]  L. Sorri and E. Leinonen, “Technology that persuades the elderly,” in Persuasive Technology, H Oinas-Kukkonen, P. Hasle, M. Harjumaa, K. Segerst?hl, and P. ?hrstr?m, Eds., vol. 5033, pp. 270–273, Springer, Berlin, Germany, 2008.
[63]  N. Ezer, A. Fisk, and W. Rogers, “Attitudinal and intentional acceptance of domestic robots by younger and older adults,” in Universal Access in Human-Computer Interaction Intelligent and Ubiquitous Interaction Environments, C. Stephanidis, Ed., vol. 5615, pp. 39–48, Springer, Berlin, Germany, 2009.
[64]  G. Cortellessa, M. Scopelliti, L. Tiberio, G. K. Svedberg, A. Loutfi, and F. Pecora, “A cross-cultural evaluation of domestic assistive robots,” in Proceedings of the AAAI Fall Symposium on AI in Eldercare: New Solutions to Old Problems, pp. 24–31, Arlington, Tex, USA, 2008.
[65]  C. Milligan, C. Roberts, and M. Mort, “Telecare and older people: who cares where?” Social Science and Medicine, vol. 72, pp. 347–354, 2011.
[66]  M. Mahani and K. S. Eklundh, “A survey of the relation of the task assistance of a robot to its social role,” in Communication KCSa, Royal Institute of Technology, Stockholm, Sweden, 2009.
[67]  K. F. MacDorman, S. K. Vasudevan, and C. C. Ho, “Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures,” AI and Society, vol. 23, no. 4, pp. 485–510, 2009.
[68]  L. Broadbent and R. Stafford, “Retirement village residents’ and staff reactions to a healthcare robot: user trial 1,” Faculty of Engineering, University of Auckland, 2011.
[69]  J. Forlizzi, C. DiSalvo, and F. Gemperle, “Assistive robotics and an ecology of elders living independently in their homes,” Human-Computer Interaction, vol. 19, no. 1-2, pp. 25–59, 2004.
[70]  M. S. Lie and K. H. S?rensen, in Making Technology our Own? Domesticating Technology into Everyday Life, Scandinavian University Press, Oslo, Norway, 1996.
[71]  Y.-H. Wu, C. Fassert, and A.-S. Rigaud, “Designing robots for the elderly: appearance issue and beyond,” Archives of Gerontology and Geriatrics, vol. 54, no. 1, pp. 121–126, 2012.
[72]  S. T. Hansen, H. J. Andersen, and T. Bak, “Practical evaluation of robots for elderly in Denmark—an overview,” in Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI '10), pp. 149–150, March 2010.
[73]  M. Mori, “The uncanny valley,” Energy, vol. 7, pp. 33–35, 1970.
[74]  W. K. Olsen, “Triangulation in social research: qualitative and quantitative methods can really be mixed,” in Developments in Sociology, M. Haralambos and M. Holborn, Eds., Causeway Press, Ormskirk, UK, 2004.
[75]  K. Joyce and L. Mamo, “Graying the cyborg; new directions in feminist analyses of aging, science, and technology,” in Age Matters; Realigning Feminist Thinking, T. S. Calasanti and K. F. Slevin, Eds., Taylor & Francis Group, London, UK, 2006.
[76]  R. Looije, M. A. Neerincx, and F. Cnossen, “Persuasive robotic assistant for health self-management of older adults: design and evaluation of social behaviors,” International Journal of Human Computer Studies, vol. 68, no. 6, pp. 386–397, 2010.
[77]  A. Cesta, G. Cortellessa, V. Giuliani, et al., “Proactive assistive technology: an empirical study,” in Proceedings of the INTERACT, pp. 255–268, Springer, Rio de Janeiro, Brazil, 2007.
[78]  A. Cesta, G. Cortellessa, M. V. Giuliani, F. Pecora, M. Scopelliti, and L. Tiberio, “Psychological implications of domestic assistive technology for the elderly,” PsychNology Journal, vol. 5, pp. 229–252, 2007.
[79]  M. Heerink, B. Kr?se, B. Wielinga, and V. Evers, “Human-robot user studies in eldercare: lessons learned,” in Proceedings of the ICOST, pp. 31–38, Belfast, Northern Ireland, 2007.
[80]  T. Klamer and S. B. Allouch, “Acceptance and use of a social robot by elderly users in a domestic environment,” in Proceedings of the 4th International Conference on Pervasive Computing Technologies for Healthcare, Pervasive Health, Munich, Germany, 2010.
[81]  A. Weiss, J. Igelsb?ck, D. Wurhofer, and M. Tscheligi, “Looking forward to a “robotic society”? notions of future human-robot relationships,” International Journal of Social Robotics, vol. 3, pp. 1–8, 2010.
[82]  C. Ray, F. Mondada, and R. Siegwart, “What do people expect from robots?” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '08), pp. 3816–3821, Nice, France, September 2008.
[83]  A. van der Plas, M. Smits, and C. Wehrmann, “Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker,” Accountability in Research, vol. 17, no. 6, pp. 299–315, 2010.
[84]  M. Lohse, F. Hegel, and B. Wrede, “Domestic applications for social robots - an online survey on the influence of appearance and capabilities,” Journal of Physical Agents, vol. 2, pp. 21–32, 2008.
[85]  A. Weiss, R. Bernhaupt, M. Tscheligi, D. Wollherr, K. Kühnlenz, and M. Buss, “A methodological variation for acceptance evaluation of human-robot interaction in public places,” in Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication (ROMAN '08), pp. 713–718, Munich, Germany, August 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413