全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

共和盆地增强型地热系统开采过程数值模拟

DOI: 10.3981/j.issn.1000-7857.2015.19.010, PP. 62-67

Keywords: 增强型地热系统,数值模拟,水热耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

干热岩资源是未来重要的清洁型能源,增强型地热系统(EGS)能够实现干热岩资源的开发利用。青海共和盆地干热岩资源储量巨大,可以作为EGS系统的靶区之一。水在热储层中的运移包含复杂的水-热耦合过程,不同的EGS运行方案对电厂发电能力有重要影响。本文基于共和盆地深部地质条件,建立了表征EGS系统水热特征的数值模型,研究了温度场、压力场的时空分布特征,并分析注入流体温度和循环流速两个可控因素对提热过程的影响。结果表明在设计的运行方案(循环流速20kg/s;注入温度60℃)下,最大提热速率可达11MW,储层寿命为22年。注入温度每降低10℃,系统最大提热速率约增加10%,且对储层寿命没有明显影响;增加循环流速可以得到更大的热提取速率,但会减少储层寿命。

References

[1]  汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31.
[2]  许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology progress in an enhanced geothermal system (Hot Dry Rock) [J]. Science & Technology Review, 2012, 30(32): 42-45.
[3]  蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33 (5): 807-811.
[4]  Massachusetts Institute of Technology. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. MIT: Cambridge, MA, 2006.
[5]  Evans K. Enhanced/Engineered Geothermal System: An introduction with overviews of deep systems built and circulated to date[R]. Beijing: China Geothermal Development Forum, 2010: 395-418.
[6]  Pashkevich R I, Taskin V V. Numerical simulation of exploitation of supercritical Enhanced Geothermal System[R]. California: Proceedings of thirty-fourth workshop on Geothermal Reservoir Engineering, 2009.
[7]  Baujard C, Bruel D. Numerical study of the impact of fluid density on the pressure distribution and stimulated volume in the Soultz HDR reservoir[J]. Geothermics, 2006, 35: 607-621.
[8]  PruessK. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351-367.
[9]  Spycher N, Pruess K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems[J]. Transport in Porous Media, 2010, 82: 173-196.
[10]  Pruess K, Curt O, George M. TOUGH2 user's guide, version 2.0[D]. Berkeley: University of California, 1999.
[11]  Xu T, Pruess K. Numerical simulation of injectivity effects of mineral scaling and clay swelling in a fractured geothermal reservoir[J]. Geothermal Resources Council Transactions, 2004, 28: 269-276.
[12]  Zeng Y C, Su Z, Wu N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107.
[13]  Rees D, Bassom A, Siddheshwar P. Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium[J]. Journal of Fluid Mechanics, 2008, 294: 379-398.
[14]  He L W, Jin Z H. A local thermal nonequilibriumporoelastic theory for fluid saturated porous media[J]. Journal of Thermal Stress, 2010, 33 (8): 799-813.
[15]  Zhang Y J, Li Z W, Guo L L, et al. Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China[J]. Energy, 2014, 78: 788-805.
[16]  Borgia A, Pruess K, Kneafsey T J, et al. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system[J]. Geothermics, 2012, 44: 13-22.
[17]  雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能 开发热-水动力耦合过程[J]. 吉林大学学报: 地球科学版, 2014, 44 (5): 1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Process for Geothermal Energy Exploitation in Enhanced Geothermal System at Songlaio Basin, China[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5): 1633-1646.
[18]  严维德, 王焰新, 高学忠, 等. 共和盆地地热能分布特征与聚集机制 分析[J]. 西北地质, 2013, 46(4): 223-230. Yan Weide, Wang Yanxin, Gao Xuezhong, et al. Distribution and aggregation mechanism of geothermal energy in Gonghe Basin[J]. Northwestern Geology, 2013, 46(4): 223-230.
[19]  赵振, 陈惠娟, 马建青, 等. 青海省共和盆地恰卜恰地区地热资源评 价与开发利用[J]. 青海环境, 2009(2): 81-84. Zhao Zhen, Chen Huijuan, Ma Jianqing, et al. Evaluation and utilization of geothermal energy at Qiabuqia in Gonghe Basin, China[J]. Journal of Qinghai Environment, 2009(2): 81-84.
[20]  孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 38(2): 119-129. Sun Zhixin, Li Baixiang, Wang Zhilin. Exploration of the possibility of hot dry rockoccurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 119-129.
[21]  Kohl T, Hopkirk R J.“FRACTure”: A simulation code for forced fluid flow and transport in fracture, porous rock[J]. Geothemics, 1995, 24 (3): 333-343.
[22]  Yamamoto T, Kitano K, Fujimitsu Y, et al. Application of simulation code, GEOTH3D, on the Ogachi HDR site[R]. Stanford University: Procedings of the 22nd Annual Workshop on Geothermal Reservoir Engineering, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413