全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多尺度空间关系研究进展

DOI: 10.3724/SP.J.1047.2015.00135, PP. 135-146

Keywords: 制图综合,尺度变化,关系一致性,拓扑关系,方向关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间关系及其尺度变化建模,一直是地理信息科学基础理论的重要前沿领域之一。本文全面总结了该领域在理论、方法和应用方面的最新进展。首先,详细阐述了关系表现与几何表现的特点和差异,提出了关系表现的尺度问题,尤其是与制图综合的关系。然后,分别结合形状化简、面对象合并、属性归纳、空间维数退化等制图综合算子,论述了拓扑和方向关系尺度变化规律的推导和建模方法。最后,结合多尺度空间关系变化模型,提出了基于关系的多尺度数据分析技术框架,并重点阐述了基于关系的多尺度数据一致性检测和多尺度数据查询的概念及解决方法,且用实例分析证明了它们的有用性。详细而具体地研究不同综合算子对拓扑和方向关系尺度变化的影响及建模方法,对于分析和理解多尺度空间数据,具有重要意义。

References

[1]  Abdelmoty A I, Jones C B. Towards maintaining consistency of spatial databases[C]. In: Golshani F, Makki K (eds.). Proceedings of the Sixth International Conference on Information and Knowledge Management, 1997:293-300.
[2]  Buttenfield B P. Object-oriented map generalization: modeling and cartographic considerations[C]. In: Muller J C, Lagrange J P, Weibel R (eds.). Proceedings of GISDATA I: GIS and Generalization, Methodology and Practice. London: Taylor & Francis, 1995:16-51.
[3]  Spaccapietra S, Vangenot C, Parent C, et al. MurMur: A research agenda on multiple representations[C]. Proceedings of the International Symposium on Database Applications in Non-Traditional Environments, Kyoto. IEEE CS Press, 1999,373-384.
[4]  李霖,吴凡.空间数据多尺度表达模型及其可视化[M].北京:科学出版社,2003.
[5]  王桥.地图信息的分形描述与自动制图综合[M].武汉:武汉测绘科技大学出版社,1998.
[6]  齐清文,刘岳.GIS环境下面向地理特征的制图概括的理论和方法[J].地理学报,1998,53(4):303-313.
[7]  艾廷华.城市地图数据库综合的支撑数据模型与方法的研究[D].武汉:武汉测绘科技大学,2000.
[8]  武芳,钱海忠,邓红艳,等.面向地图自动综合的空间信息智能处理[M].北京:科学出版社,2008.
[9]  Stefanakis E. Representation of generalized map series using semi-structured data models[J]. Cartography and GIS, 2003,30(1):51-68.
[10]  Egenhofer M, Herring J. Categorizing binary topological relations between regions, lines and points in geographic databases[R]. Orono: Department of Surveying Engineering, University of Maine, 1991.
[11]  Cohn A G, Bennett B, Gooday J, et al. Qualitative spatial representation and reasoning with the region connection calculus[J]. GeoInformatica, 1997,1(1):1-44.
[12]  Goyal R. Similarity assessment for cardinal directions between extended spatial objects[D]. Orono: University of Maine, 2000.
[13]  Papadias D, Theodoridis Y. Spatial relation, minimum bounding rectangles, and spatial data structures[J]. International Journal of Geographical Information Science, 1997,11(2):111-138.
[14]  Egenhofer M, Franzosa R. On the equivalence of topological relations[J]. International Journal of Geographic Information Systems, 1994,8(6):133-152.
[15]  Skiadopoulos S, Koubarakis M. Composing cardinal direction relations[J]. Artificial Intelligence, 2004,152(2):143-171.
[16]  Egenhofer M, Clementini E, Di Felice P. Topological relations between regions with holes[J]. International Journal of Geographical Information Systems, 1994,8(2):129-144.
[17]  Yan H, Chu Y, Li Z, et al. A quantitative description model for direction relations based on direction groups[J]. Geoinformatica, 2006,10(2):177-196.
[18]  Yang S, Yong J H, Sun J G, et al. A cell-based algorithm for evaluating directional distances in GIS[J]. International Journal of Geographical Information Science, 2010,24(4):577-590.
[19]  Kang H K, Kim T W, Li K J. Topological consistency for collapse operation in multi-scale databases[M]. In: Conceptual Modeling for Advanced Application Domains. Berlin: Springer Berlin Heidelberg, 2004:91-102.
[20]  Egenhofer M J, Al-Taha K K. Reasoning about gradual changes of topological relationships[M]. In: Theories and methods of spatio-temporal reasoning in geographic space. Berlin: Springer Berlin Heidelberg, 1992:196-219.
[21]  Tryfona N, Egenhofer M J. Consistency among parts and aggregates: A computational model[J]. Transactions in GIS, 1997,1(3):189-206.
[22]  Sorokine A, Bittner T, Renscher C. Ontological investigation of ecosystem hierarchies and formal theory for multiscale ecosystem classifications[J]. Geoinformatica, 2006,10(3):313-335.
[23]  Du S, Wang Q, Guo L. Modeling scale dependences of topological relations between lines and regions induced by reduction of attributes[J]. International Journal of Geographical Information Science, 2010,24(11):1649-1686.
[24]  Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973,10(2):112-122.
[25]  Cromley R G. Hierarchical methods of line simplification[J]. Cartography and geographic information systems, 1991,18(2):125-131.
[26]  Buttenfield B. Treatment of the cartographic line[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1985,22(2):1-26.
[27]  Clementini E, Di Felice P. A global framework for qualitative shape description[J]. GeoInformatica, 1997,1(1):11-27.
[28]  Du S. Analyzing topological changes for structural shape simplification[J]. Journal of Visual Languages & Computing, 2014,25(4):316-332.
[29]  Egenhofer M, Clementini E, Di Felice P. Evaluating inconsistencies among multiple representations[C]. In: Kraak J M, Molenaar M (eds.). Sixth International Symposium on Spatial Data Handling, 1994:901-920.
[30]  Du S, Guo L, Wang Q. Scale-explicit model for checking directional consistency in multi-resolution spatial data[J]. International Journal of Geographical Information Science, 2010,24(3):465-485.
[31]  Retz-Schmidt G. Various views on spatial prepositions[J]. AI Magazine, 1988,9(2):95-105.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133