全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ar气中1维等离子体射流阵列的实验研究

DOI: 10.13336/j.1003-6520.hve.2015.06.034, PP. 2015-1021

Keywords: 低温等离子体,等离子体射流,阵列,放电特性,光谱特性,耦合,库仑力

Full-Text   Cite this paper   Add to My Lib

Abstract:

为获得大面积射流等离子体,建立了大气压Ar气中1维等离子体射流阵列产生装置。通过电压电流波形、发光图像以及发射光谱等手段诊断了其放电特性,研究了外加电压幅值、气体流速和电源频率等对射流阵列产生的影响,得到了阵列最优工作条件,并获得此条件下阵列的放电功率和传输电荷和活性粒子等参数,进而分析了放电的排斥和耦合机制。发光图像拍摄的结果表明外加电压幅值为8.5kV,气体体积流量为20L/min,电源频率20kHz时,射流阵列等离子体喷出管口最长,各管间排斥作用和耦合作用最小,放电最强烈,此时放电功率为101.85W,传输电荷为1716nC。阵列中各管间彼此存在Coulomb力和Lorentz力,出现一定偏移是这2个力综合作用的结果。

References

[1]  Bárdos L, Baránková L. Cold atmospheric plasma: sources, processes, and applications[J]. Thin Solid Films, 2010, 318(23): 6705-6713.
[2]  邵先军,常正实,张增辉,等. 大气压氦气与氩气等离子体射流形成机理的对比研究[J]. 高电压技术,2013,39(9):2201-2206. SHAO Xianjun, CAHNG Zhengshi, ZHANG Zenghui, et al . Comparison of formation mechanism between helium and argon atmospheric pressure plasma jets[J]. High Voltage Engineering, 2013, 39(9): 2201-2206.
[3]  侯世英,罗书豪,刘 坤,等. 双环电极大气压氦气等离子体射流的特性及其影响因素[J]. 高电压技术,2013,38(7):1569-1576. HOU Shiying, LUO Shuhao, LIU Kun, et al . Characteristics and their influencing factors of double-wrapped electrode induced atmospheric pressure helium plasma jet[J]. High Voltage Engineering, 2013, 38(7): 1569-1576.
[4]  Cao Z, Walsh J L, Kong M G. Atmospheric plasma jet array in parallel electric and gas ?ow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 2009, 94(2): 1501.
[5]  Song Y, Liu D P, Wang W C, et al . Plasma inactivation of candida albicans by an atmospheric cold plasma brush composed of hollow fibers[J]. IEEE Transactions on Plasma Science, 2012, 40(4): 1098-1102.
[6]  Pei X, Wang Z, Huang Q, et al . Dynamics of a plasma jet array[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2276-2277.
[7]  Kim S, Kim J Y, Kim D Y, et al . Intense plasma emission induced by jet-to-jet coupling in atmospheric pressure plasma arrays[J]. Applied Physics Letters, 2012, 101(17): 173503.
[8]  Kim J Y, Shim J B, Kim S O. Surface modifications of rapid hydrothermal synthesized ZnO nanowires on PET substrate by cold plasma jet array[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2300-2301.
[9]  Nie Q Y, Cao Z, Ren C S, et al . A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine[J]. New Journal of Physics, 2009, 11(11): 115015.
[10]  Kim J Y, Ballato J, Foy P, et al . Atmospheric-pressure microplasma jets from linear arrays of hollow-core optical fibers for biomedical applications[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2958-2959.
[11]  Tang D, Ren C, Wang D, et al . The interactions of two cold atmospheric plasma jets[J]. Plasma Science and Technology, 2009, 11(3): 293.
[12]  Konesky G, Bays H. Cold plasma decontamination using flexible jet arrays[J]. SPIE Defense, Security and Sensing, 2010, 7665: 5-9.
[13]  Ghasemi M, Olszewski P, Bradley J W, et al . Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array[J]. Journal of Physics D: Applied Physics, 2013, 46(5): 052001.
[14]  Ka Z H, Cada M, Cha M S, et al . Barrier-torch discharge plasma source for surface treatment technology at atmospheric pressure[J]. Plasma Sources Science and Technology, 2002, 11(2): 195-202.
[15]  Wang J C, Leoni N, Birecki H, et al . Characteristics of a radio-frequency micro-dielectric barrier discharge array[J]. Plasma Sources Science and Technology, 2013, 22(2): 025015.
[16]  Wang Z, Wu G Q, Ge N, et al . Volt-ampere and thermal features of a direct-current dual-jet plasma generator with a cold gas injection[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2906-2913.
[17]  方 志,刘 源,蔡玲玲. 大气压氩等离子体射流的放电特性[J]. 高电压技术,2012,38(7):1613-1622. FANG Zhi, LIU Yuan, CAI Lingling. Discharge characteristics of atmosphere pressure plasma jet in Ar[J]. High Voltage Engineering, 2012, 38(7): 1613-1622.
[18]  方 志,靳 君,张 荐,等. 大气压Ar/H 2 O等离子体射流的放电特性[J]. 高电压技术,2014,40(7):2049-2056. FANG Zhi, JIN Jun, ZHANG Jian, et al . Characteristics of atmospheric pressure Ar/H 2 O plasma jet discharge[J]. High Voltage Engineering, 2014, 40(7): 2049-2056.
[19]  李雪辰,鲍文婷,贾鹏英, 等. 大气压刷形等离子体羽的放电特性[J]. 高电压技术,2014,40(1):166-172. LI Xuechen, BAO Wenting, JIA Pengying, et al . Discharge characteristics of a brush-shaped plasma plume under atmospheric pressure[J]. High Voltage Engineering, 2014, 40(1): 166-172.
[20]  Xiao F, Kuroda S, Kondo Y, et al . Influence of additive gas on electrical and optical characteristics of non-equilibrium atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
[21]  Xiong Q, Nikiforov A Y, Lu X P, et al . High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system[J]. Journal of Physics D: Applied Physics, 2010, 43(41): 415201.
[22]  Wei G D, Ren C S , Qian M Y, et al . Optical and electrical diagnostics of cold Ar atmospheric pressure plasma jet generated with a simple DBD configuration[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1842-1848.
[23]  Dong L F, Ji Y F, Liu W Y, et al . Diagnostics and application of an atmospheric pressure plasma generated with a hollowneedle-plate dielectric barrier discharge[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1701-1706.
[24]  张 燕,尚中选,吕印定,等. 阻抗匹配对大气压氮气介质阻挡放电的影响[J]. 真空科学与技术学报,2013,33(4):342-345. ZHANG Yan, SHANG Zhongxuan, LÜ Yinding, et al . Impact of impedance matching on discharge of dielectric barrier of atmospheric pressure nitrogen[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(4): 342-345.
[25]  郝艳捧,郑 彬,刘耀阁, 等. 大气压氩气介质阻挡放电特性随模式的演化[J]. 高电压技术,2014,40(10):2973-2979. HAO Yangpeng, ZHENG Bin, LIU Yaoge, et al . Dielectric barrier discharge characteristics in atmospheric pressure argon under different dischargemodes[J]. High Voltage Engineering, 2014, 40(10): 2973-2979.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133