全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学学报  2015 

三级烯酰胺的串联Heck反应——一种反式2,5-二芳基-3-吡咯啉化合物新颖的合成方法

DOI: 10.6023/A15060400, PP. 1018-1024

Keywords: 三级烯酰胺,Heck反应,串联反应,3-吡咯啉

Full-Text   Cite this paper   Add to My Lib

Abstract:

3-吡咯啉化合物不仅是重要的有机合成中间体,而且其骨架结构广泛存在于具有生物活性的化合物中.利用五元环三级烯酰胺的串联Heck反应,实现了反式2,5-双取代-3-吡咯啉化合物简便、快捷的合成.该方法首次将环状烯酰胺的α-芳基化反应和双键异构化进行了有效的结合,为2,5-双取代-3-吡咯啉化合物的合成提供了一种全新的合成方法.得到的3-吡咯啉产物可分别经氧化反应和还原反应方便地转化成吡咯或吡咯烷化合物.

References

[1]  (f) Ohno, H.; Kadoh, Y.; Fujii, N.; Tanaka, T. Org. Lett. 2006, 8, 947.
[2]  For recent reviews of pyrroline, pyrrole, pyrrolidine containing natural products see: (a) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
[3]  (b) Mauger, A. B. J. Nat. Prod. 1996, 59, 1205.
[4]  (c) Haslam, E. Shikimic Acid Metabolism and Metabolites, Wiley, New York, 1993.
[5]  Chan, G. W.; Francis, T.; Thureen, D. R.; Offen, P. H.; Pierce, N. J.; Westley, J. W.; Johnson, R. K. J. Org. Chem. 1993, 58, 2544.
[6]  Hamasaki, A.; Zimpleman, J. M.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2005, 127, 10767.
[7]  Cox, C. D.; Coleman, P. J.; Breslin, M. J.; Whitman, D. B.; Garbaccio, R. M.; Fraley, M. E.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.; Davide, J. P.; Diehl, R. E.; Abrams, M. T.; South, V. J.; Huber, H. E.; Torrent, M.; Prueksaritanont, T.; Li, C.; Slaughter, D. E.; Mahan, E.; Fernandez-Metzler, C.; Yan, Y.; Kuo, L. C.; Kohl, N. E.; Hartman, G. D. J. Med. Chem. 2008, 51, 4239.
[8]  Ozawa, M.; Etoh, T.; Hayashi, M.; Komiyama, K.; Kishida, A.; Ohsaki, A. Bioorg. Med. Chem. Lett. 2009, 19, 234.
[9]  Examples of 3-pyrrolines in the synthesis of natural products or as analgous of pharmaceutically relevant compounds: (a) Huwe, C. M.; Blechert, S. Tetrahedron Lett. 1995, 36, 1621.
[10]  (b) Bondzi?, B. P.; Eilbracht, P. Org. Lett. 2008, 10, 3433.
[11]  (c) Sampath, M.; Beatrix Lee, P.-Y.; Loh, T.-P. Chem. Sci. 2011, 2, 1988.
[12]  (d) Mycock, D. K.; Glossop, P. A.; Lewis, W.; Hayes, C. J. Tetrahedron Lett. 2013, 54, 55.
[13]  (e) Huang, P.-Q.; Ou, W.; Ye, J.-L. Chin. J. Chem. 2015, 33, 655.
[14]  For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives using [3+2] cycloaddition of imines and allenes: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[15]  (b) Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276.
[16]  (c) Zhao, G.-L.; Shi, M. J. Org. Chem. 2005, 70, 9975.
[17]  (d) Zheng, S.; Lu, X. Org. Lett. 2008, 10, 4481.
[18]  For example of synthesis of 2,5-disubstituted 3-pyrroline derivatives using [3+2] cycloaddition of imines with alkynes: Meng, L.-G.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 8491.
[19]  For an example of synthesis of 2,5-disubstituted 3-pyrroline derivatives via ring closing metathesis of diallyl amines: Evans, P. A.; Robinson, J. E. Org. Lett. 1999, 1, 1929.
[20]  For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives using cyclization of amino allenes: (a) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3, 3855.
[21]  (b) Xu, T.; Mu, X.; Peng, H.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 8176.
[22]  (c) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. J. Org. Chem. 1999, 64, 2992.
[23]  (d) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943.
[24]  (e) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634.
[25]  (g) Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2013, 15, 1626.
[26]  For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives via [3+2] cycloaddition of alkynes with aziridines: (a) Anderson, W. K.; Milowsky, A. S. J. Med. Chem. 1986, 29, 2241.
[27]  (b) Li, L.; Zhang, J. Org. Lett. 2011, 13, 5940.
[28]  For reviews on reactivity of enamides see: (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455.
[29]  (b) Gopalaiah, K.; Kagan, H. B. Chem. Rev. 2011, 111, 4599.
[30]  For a recent review on reactivity of tertiary enamides see: Wang, M.-X. Chem. Commun. 2015, 51, 6039.
[31]  Yang, L.; Zheng, Q.-Y.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2008, 10, 2461.
[32]  Tong, S.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Angew. Chem., Int. Ed. 2012, 51, 4417.
[33]  (a) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918.
[34]  (b) Yang, L.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Am. Chem. Soc. 2009, 131, 10390.
[35]  Tong, S.; Yang, X.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Tetrahedron 2012, 68, 6492.
[36]  (a) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. J. Am. Chem. Soc. 2013, 135, 4708.
[37]  (b) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Chem. Eur. J. 2013, 19, 16981.
[38]  (c) Lei, C.-H.; Zhao, L.; Wang, D.-X.; Zhu, J.; Wang, M.-X. Org. Chem. Front. 2014, 1, 909.
[39]  He, L.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2014, 16, 5972.
[40]  He, L.; Liu, H.-B.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2015, 71, 523.
[41]  For selected examples of applications of Heck reaction of tertiary enamides in total synthesis of natural products: (a) Kawagishi, F.; Toma, T.; Inui, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2013, 135, 13684.
[42]  (b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
[43]  For recent review of Heck reaction of tertiary enamides see: (a) Cartney, D. M.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122.
[44]  (b) Li, H.; Ding, C.; Xu, B.; Hou, X. Acta Chim. Sinica 2014, 72, 765. (李浩, 丁昌华, 许斌, 侯雪龙, 化学学报, 2014, 72, 765.)
[45]  (c) Shibasaki, M.; Vogl, E. M.; Ohshima, T. Adv. Synth. Catal. 2004, 346, 1533.
[46]  For selected examples of Heck reaction of five-membered tertiary enamides: (a) Nilsson, K.; Hallberg, A. J. Org. Chem. 1990, 55, 2464.
[47]  (b) Severino, E. A.; Correia, C. R. D. Org. Lett. 2000, 2, 3039.
[48]  (c) Oliveira, D. F.; Severino, E. A.; Correia, C. R. D. Tetrahedron Lett. 1999, 40, 2083.
[49]  (d) Severino, E. A.; Costenaro, E. R.; Garcia, A. L. L.; Correia, C. R. D. Org. Lett. 2003, 5, 305.
[50]  For selected examples of enantioselective Heck reaction of five-membered tertiary enamides: (a) Hayashi, T.; Kubo, A.; Ozawa, F. Pure Appl. Chem. 1992, 64, 421.
[51]  (b) Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis 1997, 1338.
[52]  (c) Mazuela, J.; Pàmies, O.; Diéguez, M. Chem. Eur. J. 2010, 16, 3434.
[53]  (d) Hu, J.; Lu, Y.; Li, Y.; Zhou, J. Chem. Commun. 2013, 49, 9425.
[54]  (e) Wu, C.; Zhou, J. J. Am. Chem. Soc. 2014, 136, 650.
[55]  Wheatley, B. M. M.; Keay, B. A. J. Org. Chem. 2007, 72, 7253.
[56]  (a) Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A. Tetrahedron Lett. 1991, 132, 687.
[57]  (b) Ripa, L.; Hallberg, A. J. Org. Chem. 1997, 62, 595.
[58]  Tu, T.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2003, 5, 3651.
[59]  Tietze, L. F.; Thede, K. Synlett 2000, 10, 1470.
[60]  For selected examples of Heck reactions of 5-substituted five-membered tertiary enamides see 23(b) and 23(d).
[61]  Oestreich, M. The Mizoroki-Heck Reaction, John Wiley & Sons, Ltd., 2009
[62]  For details, see Table S1 in supporting information.
[63]  For details, see Table S2 in supporting information.
[64]  Crystallographic data of compound 4b and 4j see supporting information.
[65]  Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133