全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预报单光子源下的经典-量子信息共信道同传系统研究

, PP. 445-451

Keywords: 量子光学,共信道同传,量子密钥分发,预报单光子源,时域滤波,密集波分复用

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析了密集波分复用下的经典-量子信息共信道同传系统噪声特性,提出基于预报单光子源的经典-量子信息共信道同传方案。与传统的弱相干光源相比,其可以更精确控制APD探测门限,进而实现时域滤波减少信道噪声干扰;并且可以通过控制探测器开启时间,有效避免空光子发送时的信道噪声及探测器暗计数影响。仿真结果表明,本方案提出的同传系统可有效抑制噪声干扰,与弱相干光源方案相比于更远距离达到误码率阈值,提升了安全通信距离,可作为远距离量子密钥通信共信道同传参考方案。

References

[1]  Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. 1984, 175(0).
[2]  Ekert A K. Quantum cryptography based on Bell’s theorem[J]. Physical review letters, 1991, 67(6): 661.
[3]  Gobby C, Yuan Z L, Shields A J. Quantum key distribution over 122 km of standard telecom fiber[J]. Applied Physics Letters, 2004, 84(19): 3762-3764.
[4]  Aleksic S, Winkler D, Poppe A, et al. Distribution of quantum keys in optically transparent networks: Perspectives, limitations and challenges[C]//Transparent Optical Networks (ICTON), 2013 15th International Conference on. IEEE, 2013: 1-6.
[5]  Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.
[6]  Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 2005, 87(17): 174103.
[7]  Eraerds P, Walenta N, Legré M, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.
[8]  Chapuran T E, Toliver P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 2009, 11(10): 105001.
[9]  Xia T J, Chen D Z, Wellbrock G, et al. In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels[C]//Optical Fiber Communication Conference. Optical Society of America, 2006: OTuJ7.
[10]  Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source[J]. Physical review letters, 2008, 100(9): 090501.
[11]  Qi B, Zhu W, Qian L, et al. Feasibility of quantum key distribution through a dense wavelength division multiplexing network[J]. New Journal of Physics, 2010, 12(10): 103042.
[12]  Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2012, 2(4): 041010.
[13]  Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 051123.
[14]  Xavier G B, Walenta N, De Faria G V, et al. Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation[J]. New Journal of Physics, 2009, 11(4): 045015.
[15]  Kawahara H, Medhipour A, Inoue K. Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel[J]. Optics Communications, 2011, 284(2): 691-696.
[16]  Wang Q, Wang X B, Guo G C. Practical decoy-state method in quantum key distribution with a heralded single-photon source[J]. Physical Review A, 2007, 75(1): 012312.
[17]  权东晓, 裴昌幸, 马杯新, 等. 预报单光子源诱骗态量子密钥产生率及数值计算[J]. 计算物理, 2009, 26(1): 141-146.
[18]  Ma X, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72(1): 012326.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133