Young D M. Iterative Solutions of Large Linear Systems[M]. Academic Press, New York, 1971.
[7]
Hu Q, Zou J. An iterative method with variable relaxation parameters for saddle-point problems[J]. SIAM J. Matrix Anal. Appl., 2001, 23(2): 317-338.
[8]
Benzi M, Guo X P. A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations[J]. Appl. Numer. Math., 2011, 61(1): 66-76.
[9]
Elman H, Silvester D, Wathen A. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 2005.
Elman H C, Ramage A, Silvester D J. Algorithm 866:IFISS, A Matlab toolbox for modelling incompressible flow[J]. ACM Trans. Math. Software, 2007, 33(2): Artical 14.
[14]
Cao Y, Yao L Q, Jiang M Q. A modified dimensional split preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2013, 250: 70-82.
[15]
Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive defitine linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626.
[16]
Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[J]. Numer. Math., 2004, 98(1): 1-32.
[17]
Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems[J]. IMA J. Numer. Anal., 2007,27(1):1-23.
[18]
Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J. Sci. Comput., 2006, 28(2): 583-603.
[19]
Bai Z Z, Golub G H, Ng M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer. Linear Algebra Appl., 2007, 14(4): 319-335.
[20]
Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11-12): 2900-2932.
[21]
Bai Z Z, Parlett B N, Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math., 2005, 102(1): 1-38.
[22]
Bai Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer. Linear Algebra Appl., 2009, 16(6): 447-479.
[23]
Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures[J]. Math. Comput., 2006, 75(254): 791-815.
[24]
Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172(2): 762-771.
[25]
Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J. Sci. Comput., 2005, 26(3): 844-863.
[26]
Benzi M, Szyld D B. Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods[J]. Numer. Math., 1997, 76(3): 309-321.
[27]
Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14: 1-137.
[28]
Li C J, Li B J, Evans D J. A generalized successive overrelaxation method for least square problems[J]. BIT, 1998, 38(2), 347-356.
[29]
Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problem[J]. SIAM J. Numer. Anal., 1997, 34(3): 1072-1092.