全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

关于Stokes和线性Navier-Stokes方程的广义维数分裂迭代方法

, PP. 231-244

Keywords: 鞍点问题,迭代法,维数分裂,Stokes问题,Oseen问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了鞍点问题的迭代法.在Benzi等人提出的维数分裂(DS)迭代方法的基础上,提出了具有三个参数的广义维数分裂(GDS)迭代法,该方法包含了DS迭代法,理论分析表明该方法是无条件收敛的.通过对有限差分法和有限元法离散的Stokes问题及有限元法离散的Oseen问题的数值结果表明,本文所给方法是有效的.

References

[1]  程晓良, 彭武安. 鞍点问题迭代解法收敛因子估计[J]. 高校应用数学学报, 2000, 15(3): 365-368.
[2]  Golub G H, Wu X, Yuan J Y. SOR-like methods for augmented systems[J].BIT, 2001, 41(1): 71-85.
[3]  Li J C, Kong X.Optimum parameters of GSOR-1ike methods for the augmented systems[J]. Appl. Math. Comput., 2008, 204(1): 150-161.
[4]  潘春平, 王红玉, 赵伟良. 一种求解鞍点问题的广义对称超松弛迭代法[J]. 数学杂志, 2011, 31(3): 569-574.
[5]  潘春平, 王红玉. 一种求解鞍点问题的广义预条件对称-反对称分裂迭代法[J]. 数值计算与计算机应用, 2011, 32(3): 174-182. 浏览
[6]  Young D M. Iterative Solutions of Large Linear Systems[M]. Academic Press, New York, 1971.
[7]  Hu Q, Zou J. An iterative method with variable relaxation parameters for saddle-point problems[J]. SIAM J. Matrix Anal. Appl., 2001, 23(2): 317-338.
[8]  Benzi M, Guo X P. A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations[J]. Appl. Numer. Math., 2011, 61(1): 66-76.
[9]  Elman H, Silvester D, Wathen A. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 2005.
[10]  曹阳, 谈为伟, 蒋美群. 广义鞍点问题的松弛维数分解预条件子[J].计算数学, 2012, 34(4): 351-260. 浏览
[11]  豆铨煜, 殷俊锋. 一类求解鞍点问题的广义不精确Uzawa方法[J].计算数学, 2012, 34(1): 37-48. 浏览
[12]  潘春平. 关于鞍点问题的预处理HSS-SOR交替分裂迭代方法[J]. 高校应用数学学报, 2012, 27(4): 456-464.
[13]  Elman H C, Ramage A, Silvester D J. Algorithm 866:IFISS, A Matlab toolbox for modelling incompressible flow[J]. ACM Trans. Math. Software, 2007, 33(2): Artical 14.
[14]  Cao Y, Yao L Q, Jiang M Q. A modified dimensional split preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2013, 250: 70-82.
[15]  Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive defitine linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626.
[16]  Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[J]. Numer. Math., 2004, 98(1): 1-32.
[17]  Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems[J]. IMA J. Numer. Anal., 2007,27(1):1-23.
[18]  Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J. Sci. Comput., 2006, 28(2): 583-603.
[19]  Bai Z Z, Golub G H, Ng M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer. Linear Algebra Appl., 2007, 14(4): 319-335.
[20]  Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11-12): 2900-2932.
[21]  Bai Z Z, Parlett B N, Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math., 2005, 102(1): 1-38.
[22]  Bai Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer. Linear Algebra Appl., 2009, 16(6): 447-479.
[23]  Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures[J]. Math. Comput., 2006, 75(254): 791-815.
[24]  Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172(2): 762-771.
[25]  Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J. Sci. Comput., 2005, 26(3): 844-863.
[26]  Benzi M, Szyld D B. Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods[J]. Numer. Math., 1997, 76(3): 309-321.
[27]  Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14: 1-137.
[28]  Li C J, Li B J, Evans D J. A generalized successive overrelaxation method for least square problems[J]. BIT, 1998, 38(2), 347-356.
[29]  Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problem[J]. SIAM J. Numer. Anal., 1997, 34(3): 1072-1092.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133