全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时空兴趣点的单人行为及交互行为识别

, PP. 304-308

Keywords: 通信技术,人体行为识别,时空特征点,混合高斯模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文方法首先从视频中提取出代表足够运动信息的时空兴趣点,并通过人体前景剪影连通性分析判别时空兴趣点的点集范围。然后对每个视频的兴趣点样本进行高斯混合聚类生成时空单词。最后对时空单词进行训练得到每个行为的高斯混合模型用于人体行为的识别。该方法既可用于单人行为识别也可用于双人行为识别。在行为库上的实验结果证明了该方法有较高的正确率。

References

[1]  Candamo J, Shreve M, Goldgof D B, et al. Understanding transit scenes: a survey on human behavior-recognition algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 206-224.
[2]  吴联世, 夏利民, 罗大庸. 人的交互行为识别与理解研究综述[J]. 计算机应用与软件, 2011, 28(11): 60-63.Wu Lian-shi,Xia Li-min,Luo Da-yong. Survey on human interactive behavior recognition and comprehension[J]. Computer Applications and Software, 2011,28(11): 60-63.
[3]  Ryoo M S, Aggarwal J K. Spatio-temporal relationship match: video structure comparison for recognition of complex human activities[C]∥IEEE 12th International Conference on Computer Vision, 2009: 1593-1600.
[4]  Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human actions and interactions[J]. ACM Journal of Multimedia Systems, Special Issue on Video Surveillance,2004, 10(2): 164-179.
[5]  Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 1709-1718.
[6]  韩磊, 李君峰, 贾云得. 基于时空单词的两人交互行为识别方法[J].计算机学报, 2010, 33(4): 776-784.Han Lei, Li Jun-feng, Jia Yun-de. Human interaction recognition using Spatio-Temporal words[J].Chinese Journal of Computers, 2010, 33(4): 776-784.
[7]  Harris C, Stephens M. A combined corner and edge detector[C]∥Proceeding of the 4th Alvey Vision Conference, 1988:147-151.
[8]  Laptev I, Lindeberg T. Space-time interest points[C]∥Proceedings of Ninth IEEE International Conference on Computer Vision,2003: 432-439.
[9]  Dollár P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features[C]∥Proceedings of 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance,2005: 65-72.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133