全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Unscented信息滤波器的分布式目标融合跟踪

, PP. 658-662

Keywords: 信息处理技术,传感器网络,分布式估计,Unscented变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对无线传感器网络下的非线性运动目标跟踪问题,提出一种基于Unscented信息滤波器的分布式融合跟踪算法。该算法在信息滤波器框架下将Unscented变换与扩展信息滤波器相结合,有效地解决了运动目标和量测的非线性。在网络拓扑结构和通讯带宽的约束下,利用卡尔曼一致性滤波算法对所有传感器节点估计值进行分布式信息融合。仿真结果表明了该算法的有效性和优越性。

References

[1]  Yao K. Sensor networking: concepts, applications and challenges[J]. Acta Automatica Sinica, 2006, 32(6): 839-845.
[2]  Chong C Y, Kumar S P. Sensor networks: evolution, opportunities and challenges[J]. Proceedings of the IEEE, 2003, 91(8): 1247-1256.
[3]  Sayeed A, Estrin D, Pottie G, et al. Special issue on self-organizing distributed collaborative sensor networks[J]. IEEE Journal of Selected Areas on Communication, 2005, 23(4): 689-872.
[4]  Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2997-3009.
[5]  Liu G, Worgotter F, Markelic I. Square-root Sigma-point information filtering[J]. IEEE Transactions on Automatic Control, 2012, 57(11): 2945-2950.
[6]  Noori M, Ardakani M. Energy efficiency of universal decentralized estimation in random sensor networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(12):4023-4028.
[7]  Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters[J]. IEEE Transactions on Signal Processing, 2012, 60(2):545-555.
[8]  石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用[J]. 自动化学报, 2011, 38(6):431-437.Shi Yong,Han Chong-zhao. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 38(6):431-437.
[9]  Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering[J]. IEEE Signal Processing Letters, 2008, 15:861-864.
[10]  Khan U A, Moura J M F. Distributing the Kalman filter for large-scale systems[J]. IEEE Transactions on Signal Processing, 2008, 56(10):4919-4935.
[11]  Cattivelli F S, Sayed A H. Diffusion strategies for distributed Kalman filtering and smoothing[J]. IEEE Transactions on Automatic Control, 2010, 55(9):2069-2084.
[12]  Olfati-Saber R. Kalman-consensus filter: Optimality, stability and performance[C]∥Proceedings of IEEE Conference on Decision and Control. Shanghai: IEEE, 2009: 7036-7042.
[13]  Olfati-Saber R, Fax R, Murray R. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1):215-233.
[14]  王帅, 杨文, 侍洪波. 带丢包一致性滤波算法研究[J]. 自动化学报, 2010, 36(12):1689-1696.Wang Shuai,Yang Wen,Shi Hong-bo. Consensus-based filtering algorithm with packet-dropping[J]. Acta Automatica Sinica, 2010, 36(12):1689-1696.
[15]  王林, 张国忠, 朱华勇, 等. 面向移动传感器网络的自适应一致性融合估计方法[J]. 上海交通大学学报, 2011, 45(3):121-129.Wang Lin, Zhang Guo-zhong, Zhu Hua-yong, et al. Adaptive consensus fusion estimation for mobile sensor networks[J]. Journal of Shanghai Jiaotong University, 2011, 45(3):121-129.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133