|
吉林大学学报(工学版) 2015
求解约束优化问题的引导多目标差分进化算法, PP. 569-575 Abstract: 将约束优化问题转化为带偏好的双目标优化问题,用差分进化算法求解转化问题。为了克服基于Pareto支配关系的多目标算法求解转化问题时没有考虑问题偏好、收敛慢等缺点,借助多目标α-支配关系的特点,提出了基于动态α-支配的新适应度函数。新适应度函数根据种群中可行解的比例动态平衡进化过程中对两个目标的偏好,引导算法不断向问题的偏好区域靠近,从而快速收敛到约束优化问题的最优解。对6个标准测试函数的数值实验结果表明:基于α-支配的动态引导多目标差分进化算法能快速收敛到问题的最优解。与3种经典高效算法的比较说明,所提出算法的鲁棒性强且效率高。
|