全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2015 

太湖河蚬(Corbiculafluminea)对富营养水体水质的改善作用

DOI: 10.18307/2015.0316

Keywords: 河蚬,密度,富营养水体,水质改善,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

河蚬(Corbiculafluminea)为太湖优势大型底栖动物,通过受控实验研究其对富营养水体的水质改善效果.根据太湖河蚬的自然丰度设置4组密度处理,分别为无河蚬对照组、低密度河蚬组(生物量为130g/m2)、中密度河蚬组(260g/m2)和高密度河蚬组(520g/m2).结果表明:河蚬滤食显著降低悬浮物浓度与叶绿素a含量,低、中、高密度河蚬组水体悬浮物浓度较对照组分别降低了20.85%、34.90%和53.79%,叶绿素a浓度分别降低了23.29%、48.32%和71.17%;放置河蚬还降低了水体TN、TP浓度,但是中密度河蚬组与高密度河蚬组没有显著差异.分析认为,河蚬通过滤食作用降低水体浊度、改善光照条件,有利于底栖藻类的生长及沉水植物的恢复,对富营养水体的生态修复具有重要意义;就太湖而言,河蚬对水质的改善效果可能受沉积物再悬浮造成的营养盐释放等因素的制约.

References

[1]  马健荣, 邓建明, 秦伯强等. 湖泊蓝藻水华发生机理研究进展. 生态学报, 2013, 33(10):3020-3030.
[2]  Kairesalo T, Laine S, Luokkanen E. The ecological bases for lake and reservoir management. Dordrecht:Springer Netherlands, 1999:99-106.
[3]  秦伯强, 高 光, 胡维平等. 浅水湖泊生态系统恢复的理论与实践思考. 湖泊科学, 2005, 17(1):9-16.
[4]  吴庆龙, 陈宇炜, 刘正文. 背角无齿蚌对浮游藻类的滤食选择性与滤水率研究. 应用生态学报, 2005, 16(12):2423-2427.
[5]  Zhou Y, Yang HS, Zhang T et al. Influence of filtering and biodeposition by the cultured scallops Chlamys farreri on benthic-pelagic coupling in a eutrophic bay in China. Marine Ecology Progress Series, 2006, 317:127-141.
[6]  周 毅, 杨红生, 张福绥. 海水双壳贝类的生物沉积及其生态效应. 海洋科学, 2003, 27(2):23-26.
[7]  Naddafi R, Pettersson K, Eklov P. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology, 2007, 52:823-842.
[8]  Hosper SH. Biomanipulation, new perspective for restoring shallow eutrophic lakes in the Netherlands. Hydrobiology Bulletin, 1989, 23(1):5-10.
[9]  Caraco NF, Cole JJ, Raymond PA et al. Zebra mussel invasion in a large, turbid river:Phytoplankton response to increased grazing. Ecology, 1997, 78(2):588-602.
[10]  杨东妹, 陈宇炜, 刘正文等. 背角无齿蚌滤食对营养盐和浮游藻类结构影响的模拟. 湖泊科学, 2008, 20(2):228-234.
[11]  费志良, 潘建林, 徐在宽等. 三角帆蚌对水体悬浮物和叶绿素a消除量的研究. 海洋湖沼通报, 2005, (2):40-45.
[12]  潘建林, 徐在宽, 唐建清等. 湖泊大型贝类控藻与净化水质的研究. 海洋湖沼通报, 2007, (2):69-79.
[13]  张虎才, 陈 玥, 樊红芳等. 河蚬分布的气候环境及壳体稳定同位素. 海洋地质与第四纪地质, 2007, 27(3):77-84.
[14]  曹文明, 周 刚, 盛建明等. 太湖河蚬资源现状及演变. 南京林业大学学报:自然科学版, 2000, (z1):125-128.
[15]  蔡永久, 龚志军, 秦伯强. 太湖软体动物现存量及空间分布格局(2006-2007年). 湖泊科学, 2009, 21(5):713-719.
[16]  蔡 炜, 蔡永久, 龚志军等. 太湖河蚬时空格局.湖泊科学, 2010, 22(5):714-722.
[17]  黄祥飞. 湖泊生态调查观测与分析. 北京:中国标准出版社, 2000.
[18]  金相灿, 屠清瑛. 湖泊富营养化调查规范. 北京:中国环境科学出版社, 1990.
[19]  周 会, 刘丛强, 李心清等.贵阳南明河河蚬壳体微量元素变化特征及其与河水污染的关系研究. 贵州科学, 2008, (1):39-44.
[20]  Doris S, Guillerm M. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmonfarming eutrophication. Aquaculture, 1999, 171:65-81.
[21]  更多...
[22]  Hakenkamp C,Palmer M. Introduced bivalves in freshwater ecosystems:the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia, 1999, 119(3):445-451.
[23]  McMahon RF. Evolutionary and physiological adaptations of aquatic invasive animals:r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(7):1235-1244.
[24]  Asmus RM, Asmus H. Mussel beds:limiting or promoting phytoplankton? Journal of Experimental Marine Biology and Ecology, 1991, 148(2):215-232.
[25]  刘旭博, 李 柯, 周德勇等. 三角帆蚌对蓝藻的滤食作用及其对沉水植物生长的影响. 水生态学杂志, 2011, 32(2):17-24.
[26]  Vadeboncoeur Y, Steinman A. Periphyton function in lake ecosystems. The Scientific World Journal, 2002, 2:1449-1468.
[27]  Libouriussen L, Jeppesen E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and turbid shallow lake. Freshwater Biology, 2003, 48(3):418-431.
[28]  Woodruff SL, House WA, Callow ME et al. The effects of biofilms on chemical processes in surficial sediments. Freshwater Biology, 1999, 41(1):73-89.
[29]  McCormick PV, O\'Dell MB, Shuford III RBE et al. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany, 2001, 71(2):119-139.
[30]  宋玉兰,秦伯强, 高 光. 附着生物对富营养化水体氮磷的去除效果. 长江流域资源与环境, 2008, (2):18-26.
[31]  张 雷, 古小治, 邵世光等. 河蚬(Corbicula fluminea)扰动对湖泊沉积物性质及磷迁移的影响. 环境科学, 2011, 32(1):88-95.
[32]  Lohner RN, Sigler V, Mayer CM et al. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes. Microbial Ecology, 2007, 54(3):469-477.
[33]  Bruesewitz DA, Tank JL, Bernot MJ. Delineating the effects of zebra mussels (Dreissena polymorpha) on N transformation rates using laboratory mesocosms. Journal of the North American Benthological Society, 2008, 27(2):236-251.
[34]  Kautsky N, Wallentinus I. Nutrient release from a Baltic Mytilus-red algal community and its rote in benthic and pelagic productivity. Ophelia, 1980, (suppl):17-30.
[35]  徐海军, 凌去非, 杨彩根等. 3种淡水贝类对藻类消除作用的初步研究. 水生态学杂志, 2010, 3(1):72-75.
[36]  Karatayev AY, Padilla DK, Minchin D et al. Changes in global economies and trade:the potential spread of exotic freshwater bivalves. Biological Invasions, 2007, 9(2):161-180.
[37]  Gutiérrez JL, Jones CG, Strayer DL et al. Mollusks as ecosystem engineers:the role of shell production in aquatic habitats. Oikos, 2003, 101(1):79-90.
[38]  Cantanhêde G, Hahn NS, Gubiani EA et al. Invasive molluscs in the diet of Pterodoras granulosus (Valenciennes, 1821)(Pisces, Doradidae) in the upper Paraná River floodplain, Brazil. Ecology of Freshwater Fish, 2008, 17(1):47-53.
[39]  Gergs R, Rinke K, Rothhaupt KO. Zebra mussels mediate benthic-pelagic coupling by biodeposition and changing detrital stoichiometry. Freshwater Biology, 2009, 54:1379-1391.
[40]  He H, Liu XB, Liu XL et al. Effects of cyanobacterial blooms on submerged macrophytes alleviated by the native Chinese bivalve Hyriopsis cumingii:A mesocosm experiment study. Ecological Engineering, 2014, 71:363-367.
[41]  史龙新, 张运林, 秦伯强. 太湖梅梁湾水源地示范区水质改善初探. 长江流域资源与环境, 2006, 15(2):232-236.
[42]  罗潋葱, 秦伯强, 胡维平等. 不同水动力扰动下太湖沉积物的悬浮特征. 湖泊科学, 2004, 16(3):273-275.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133