Watson SB, Mccauley E, Downing JA. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. American Society of Limnology and Oceanography, 1997, 42(3): 487-495.
[3]
Suikkanen S, Laamanen M, Huttunen M. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science, 2007, 71: 580-592.
[4]
Stevenson JR, Peterson CG, Kirschtel DB et al. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology, 1991, 27(1):59-69.
[5]
章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991:426.
[6]
Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature, 2010, 466: 591-596.
[7]
Welschmeyer NA. Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnology and Oceanography, 1994, 39: 1985-1992.
[8]
Asai R,Matsukawa R, Ikebukuro K et al. Highly sensitive chemiluminescence flow-injection detection of the red tide phytoplankton Heterosigma carterae. Analytica Climica Acta, 1999, 390(1/2/3): 237-244.
[9]
Becker A, Meister A, Wilhelm C. Flow cytometric discrimination of various phycobilin-containing phytoplankton groups in a hypertrophic reservoir. Cytometry, 2002, 48(1): 45-57.
[10]
Stauber JL, Franklin NM, Adams MS.Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol, 2002, 20(4): 141-143.
[11]
曹为民.介绍一种先进的粒度测量仪器——库尔特计数器.电力环境保护,1989,(1): 50-52.
[12]
Hallegraeff GF, Hara Y. Taxonomy of harmful marine raphidophytes. In: Hallegraeff GM, Anderson DM, Cerebella AD eds. Manual on harmful marine microalgae. Paris: UNESCO, 1995: 365-371.
[13]
Uterm?hl H. Neue wege in der quantitativan erfassung des planktons(Mit besondere Berücksichtigung des Ultraplanktons). Verh Int Verein Theor Angew Limnol, 1931, 5: 567-595.
[14]
Uterm?hl H. Zur vervollkomnung der quantitativen phytoplankton methodik. Mitt Int Verein Theor Angew Limnol, 1958, 9: 1-38.
[15]
Sournia A. Phytoplankton manual. Paris: UNESCO, 1978.
[16]
Paxinos R, Mitchell JG. A rapid uterm?hl method for estimating algal numbers. Journal of Plankton Research, 2000, 22(12): 2255-2262.
Steinberg MK, First MR, Lemieux EJ et al. Comparison of techniques used to count single-celled viable phytoplankton. Journal of Applied Phycology, 2012, 24(4): 751-758.
[19]
Sun J, Liu DY. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 2003, 25(11): 1331-1346.
[20]
Hillebrand H, Dürselen CD, Kirschtel D et al. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 1999, 35: 403-424.
[21]
更多...
[22]
Ravi kumar MS, Ramaiah N, Tang DL. Morphometry and cell volumes of diatoms from a tropical estuary of India. India Journal of Marine Sciences, 2009, 38(2): 160-165.
[23]
Truby EW. Preparation of single-celled marine dinoflagellates for electron microscopy. Microscopy Research and Technique, 1997, 36: 337-340.
Guillard RRL. Growth measurements. Division rates. In: Stein JR ed. Handbook of phycological methods. Cambridge: Cambridge University Press, 1973.
[26]
Siemcki CK, Sieracki ME, Yentsch CS. An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series, 1998, 168: 285-296.
[27]
Wert EC, Dong MM, Rosario-Ortiz FL. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes. Water Research, 2013, 47(11): 3752-3761.
[28]
Eigemann F, Hilt S, Schmitt-Jansen M. Flow cytometry as a diagnostic tool for the effects of polyphenolic allelochemicals on phytoplankton. Aquatic Botany, 2013, 104: 5-14.
[29]
Hyka P, Lickova S, P?ibyl P et al. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnology Advances, 2013, 31(1): 2-16.
[30]
Monaldi AC, Romero GG, Alanís EE et al. Digital holographic microscopy for microalgae biovolume assessment. Optics Communications, 2015, 336(1): 255-261.
[31]
Malkassian A, Nerini D, van Dijk MA et al. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer. Cytometry A, 2011, 79: 263-275.
[32]
Picot J, Guerin CL, le van Kim C et al. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology, 2012, 64: 109-130.
[33]
Moberg EA, Sosik HM. Distance maps to estimate cell volume from two-dimensional plankton images.Limnology and Oceanography: Methods, 2012, 10: 278-288.
[34]
Mackey DJ, Blanchot J, Higgins HW et al. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Research Part II, 2002, 49(13/14): 2561-2582.
[35]
Latasa M, Bidigare RR, Ondrusek ME et al. HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Marine Chemistry, 1996, 51(4): 315-324.
[36]
Wright SW, Jeffrey SW, Mantoura RFC et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplanklon. Marine Ecology Progress Series, 1991, 77: 183-196.
[37]
Brotas V, Plantc-Cuny MR. Identification and quantification of chlorophy Ⅱ and carotenoid pigments in marine sediments: A protocol for HPLC analysis. Oceanographic Acta, 1996, 19(6): 623-634.
[38]
Kwan WC, Kiln WC. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere, 2003, 52(9): 1633-1640.
[39]
Zapata M, Jeffrey SW, Wright SW.Photosynthetic pigments in 37 species(65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series, 2004, 270: 83-102.
[40]
姚 鹏.胶州湾浮游藻的色素分析和基于色素的分类方法研究[学位论文].青岛:中国海洋大学,2005.
[41]
Hodgson DA, Wright SW, Davies N. Mass Spectrometry and reverse phase HPLC techniques for the identification of degraded fossil pigments in lake sediments and their application in palaeolimnology. Journal of Paleolimnology, 1997, 18(4): 335-350.
[42]
Hou JJ, Huang BQ, Cao ZR et al. Effects of nutrient limitation on pigments in Thalassiosira weissflogii and Prorocentrum donghaiense. Journal of Integrative Plant Biology, 2007, 49(5): 686-697.
[43]
Catherine A, Escoffier N, Belhocine A et al. On the use of the Fluoro Probe, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 2012, 46(6): 1771-1784.
[44]
Chang DW, Hobson P, Burch M et al. Measurement of cyanobacteria using in-vivo fluoroscopyEffect of cyanobacterial species, pigments, and colonies. Water Research, 2012, 46(16): 5037-5048.
[45]
Medina-Cobo M, Domínguez JA, Quesada A et al. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Water Research, 2014, 63: 10-20.
[46]
Lunetta RS, Schaeffer BA, Stumpf RP et al. Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing of Environment, 2015, 157: 24-34.
[47]
Chekalyuk A, Landry M, Goericke R et al. Laser fluorescence analysis of phytoplankton across a frontal zone in the California current ecosystem. Journal of Plankton Research, 2012, 34(9): 761-777.
[48]
Lee T, Tsuzuki M, Takeuchi T et al. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method. Analytica Chimica Acta, 1995, 302(1): 81-87.
[49]
Beutler M, Wiltshire KH, Arp M et al. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. Biochimica et Biophysica Acta, 2003, 1604(1): 33-46.
[50]
Beutler M, Wiltshire KH, Meyer B et al. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research, 2002, 72(1): 39-53.
Chen P, Pan D, Mao Z. Application of a laser fluorometer for discriminating phytoplankton species. Optics & Laser Technology, 2015, 67: 50-56.
[53]
Koehne B, Elli G, Jennings RC et al. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochimica et Biophysica Acta, 1999, 1412(2): 94-107.
[54]
Carder KL, Steward RG. A remote-sensing reflectance model for red-tide dinoflagellate off West Florida. Limnology and Oceanography, 1985, 30: 286-298.
[55]
Ahn YH, Shanmugam P, Ryu JH et al. Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae, 2006, 5(2): 213-231.
[56]
Brewin RJW, Hardman-Mountford NJ, Lavender SJ et al. An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sensing of Environment, 2011, 115(2): 325-339.
[57]
Alikas K, Kangro K, Reinart A. Detecting cyanobacterial blooms in large North European lakes using the Maximum Chlorophyll Index. Oceanologia, 2010, 52: 237-257.
[58]
Wynne TT, Stumpf RP, Tomlinson MC et al. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography, 2010, 55: 2025-2036.
[59]
Matthews MW, Bernard S, Robertson I. An algorithm for detecting trophic status(chlorophyll-a), cyanobacteria-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment, 2012, 124: 637-652.
[60]
Duan H, Ma R, Hu C. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of east China. Remote Sensing of Environment, 2012, 126: 126-135.
[61]
Hunter PD, Tyler AN, Carvalho L et al. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of Environment, 2010, 114: 2705-2718.
[62]
Ruiz-Verdú A, Simis SGH, Hoyos CD et al. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sensing of Environment, 2008, 112: 3996-4008.
[63]
Gómez JAD, Alonso CA, García AA. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive(WFD) and as a system of surveillance of cyanobacterial harmful algae blooms(SCyanoHABs). Environmental Monitoring and Assessment, 2011, 181: 317-334.
[64]
de Jonge VN, Colijn F. Dynamics of microphytobenthos biomass in the Ems estuary. Marine Ecology Progress Series, 1994, 104: 185-196.
[65]
Wirtz KW, Pahlow M. Dynamic chlorophyll and nitrogen: carbon regulation in algae optimizes instantaneous growth rate. Marine Ecology Progress Series, 2010, 402: 81-96.
[66]
Cho ES, Costas E. Rapid monitoring for the potentially ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters using fluorescent probe tools. Journal of Plankton Research, 2004, 26(2): 175-180.
[67]
Fabienne G, Laetitia P, Béatrice B et al. Monoclonal antibody against the surface of Alexandrium minutum used in a whole-cell ELISA. Harmful Algae, 2009, 8(3): 538-545.
[68]
Vrieling EG, Poll WH, Vriezekolk G et al. Immuno-flow cytometric detection of the ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense: independence of physiological state. Journal of Sea Research, 1997, 37(1/2): 91-100.
[69]
Xin ZY, Yu ZG, Wang TC et al. Identification and quantification of the toxic dinoflagellate Gymnodinium sp. with competitive enzyme-linked immunosorbent assay(cELISA). Harmful Algae, 2005, 4(2): 297-307.
Zechman FW, Zimmer EA, Theriot EC.Use of ribosomal DNA internal transcribed spacers for phylogenetic studies in diatoms. Journal of Phycology, 1994, 30: 507-512.
Steffen MM, Zhu Z, McKay RML et al. Taxonomic assessment of a toxic cyanobacteria shift in hypereutrophic Grand Lake St. Marys(Ohio, USA). Harmful Algae, 2014, 33: 12-18.
[75]
Dueymes C, Decout JL, Peltie P et al. Fluorescent deazaitavin oligonucleotide probes for selective detection of DNA. Angewandte Chemie International Edition, 2002, 41(3): 486-489.
[76]
Amann R, Ludwig W, Ribosomal RNAtargeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, 2000, 24(5): 555-565.
[77]
Kim CJ, Kim CH, Sako Y. Development of molecular identification method for genus Alexandrium(Dinophyceae) using whole-cell FISH. Marine Biotechnology, 2005, 7(3): 215-222.
[78]
Miller PE, Scholin CA. On detection of Pseudo-nitzschia(Baeillariophyceae) species using whole cell hybridization: Sample fixation and stability. Journal of Phycology, 2000, 36: 238-250.
[79]
Hosoi-Tanabe S, Sako Y. Rapid detection of natural ceils of Alexandrium tamarense and A. catenella(Dinophyceae) by fluorescence in situ hybridization. Harmful Algae, 2005, 4: 319-328.
[80]
Tengs T, Bowers HA, Ziman AP et al. Genetic polymorphism in Gymnodinium galatheanum chloroplast DNA sequences and development of a molecular detection assay. Melecular Ecology, 2001, 10: 515-523.
[81]
He SY, Yu ZG.A real-time PCR method for rapid detection of Gymnodinium sanguineum. Journal of Zhejiang University: Agric & Life Sci, 2009, 35(2): 119-126.
[82]
Cai QS, Li RX, Zhen Y et al. Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae, 2006, 5(3): 300-309.
Popp BN, Laws EA, Bidigare RR et al. The effect of phytoplankton cell geometry on carbon isotopic-fractionation. Geochinica et Cosmochimica Acta, 1998, 62(1): 69-77.
[93]
彦昌敬.植物组织培养手册.上海:上海科学技术出版社,1990: 453.
[94]
Brussaard C, Thyrhaug R, Dominigue M et al. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla(Prasinophyceae) and Phaeocystis pouchetii(Prymnesiophyceae). Journal of Phycology, 1999, 35(5): 941-948.
Montagnes DJS, Berges JA, Harrison PJ et al. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 1994, 39(5): 1044-1060.