全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
红外技术  2015 

基于超像素时空显著性的运动目标检测算法

DOI: 10.11846/j.issn.1001_8891.201505009, PP. 404-410

Keywords: 超像素,时空显著性,运动连续性,恒虚警处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对复杂背景下运动目标检测存在的背景干扰、目标分割不完整等问题,利用目标静态灰度特征和运动特征,结合目标运动连续特性,提出了一种基于超像素时空显著图的运动目标检测算法。首先对图像基于简单线性迭代聚类算法(SLIC)进行超像素分割,以初始超像素为节点、以运动特征差异性为边建立图结构对超像素区域进行合并,得到最终超像素图像,可以有效解决传统超像素分割方法过分割而导致目标被分为多个部分的问题;然后分别利用目标静态特征对比度和运动特征对比度,得到静态显著性图和运动显著性图,并融合得到最终的时空显著性图;最后利用恒虚警处理技术,结合运动连续特性实现目标的检测,可以有效减少虚警目标。实验结果表明,该算法针对复杂背景具有良好的鲁棒性,并且可以比较完整的保留目标的信息。

References

[1]  ?Lipton A, Kanade T, Fujiyoshi H, et al. A system for video surveillance and monitoring[M]. Pittsburg: Carnegie Mellon University, the Robotics Institute, 2000. [2] ?Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition, 1999, 2: doi: http: //dx. doi. org/ 10.1109/ CVPR. 1999. 784637. [3] ?Kimura A, Yonetani R, Hirayama T. Computational models of human visual attention and their implementations: A survey[J]. IEICE Transactions on Information and Systems, 2013, 96(3): 562-578. [4] ?Margolin R, Tal A, Zelnik-Manor L. What Makes a Patch Distinct?[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 1139-1146. [5] ?Borji A, Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207. [6] ?Borji A, Sihite D N, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69. [7] ?Ni Q, Gu X. Video attention saliency mapping using pulse coupled neural network and optical flow[C]//2014 International Joint IEEE Conference on Neural Networks (IJCNN), 2014: 340-344.? [8] ?Luo Q, Geng Y, Liu J, et al. Saliency and texture information based full-reference quality metrics for video QoE assessment[C]//2014 IEEE Conference on Network Operations and Management Symposium (NOMS), 2014: 1-6. [9] ?王爱齐, 邱天爽. 基于测地距离的超像素生成方法[J]. 大连理工大学学报, 2012, 52(4): 610-614. Wang Ai-qi, Qiu Tian-shuang. Superpixels construction method based on geodesic distance[J]. Jouranl of Dalian University of Technology, 2012, 52(4): 610-614. [10] ?Achanta R, Shaji A, Smith K, et al. Slicsuperpixels[R/OL]. école Polytechnique Fédéral de Lausssanne (EPFL), Tech. Rep, 2010: http://ivrgwww.epfl.ch/supplementary_material/RK_SLICSuperpixels/. [11] ?Sethian J A. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science[M]. Cambridge university press, 1999. [12] ?Yatziv L, Bartesaghi A, Sapiro G. O(N) implementation of the fast marching algorithm[J]. Journal of computational physics, 2006, 212(2): 393-399. [13] ?Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: Automatic detection of tracking failures[C]//20th IEEEInternational Conference on Pattern Recognition(ICPR), 2010: 2756-2759. [14] ?Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167-181. [15] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. [16] ?Gandhi P P, Kassam S A. Analysis of CFAR processors in homogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445. [17] ?Harel J, Koch C, Perona P. Graph-based visual saliency[C]// Advances in neural information processing systems, 2006: 545-552. [18] ?Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926. [19] ?Bruce N, Tsotsos J. Saliency based on information maximization[C] //Advances in neural information processing systems, 2005: 155-162. [20] ?Hou X, Zhang L. Saliency detection: A spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8. [21] ?陈钱. 红外图像处理技术现状及发展趋势[J]. 红外技术, 2013, 35(6): 311-318. ? ? ?Chen Qian. The status and development trend of infrared image processing technology[J]. Infrared Technology, 2013, 35(6): 311-318.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133