全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风云三号C星微波湿温探测仪的定标和验证

DOI: 10.6038/cjg20150103, PP. 20-31

Keywords: 风云三号C星,微波湿温探测仪,在轨测试,定标精度验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

风云三号C星(FY-3C)已经于2013年9月23日发射升空,其上装载的微波湿温探测仪(MWHTS)已于9月30日开机正常工作.MWHTS具有对大气温度和湿度垂直分布进行同步探测的能力.MWHTS为跨轨扫描式微波辐射计,在89~191GHz毫米波段内设置了十五个探测通道,其中包括118.75GHz氧气吸收线附近的8个大气温度探测通道,183.31GHz水汽吸收线附近的5个大气湿度探测通道,以及89GHz和150GHz两个窗区通道.设置在118.75GHz的一组毫米波探测通道是国际上业务卫星首次使用的大气探测通道,这组通道和183.31GHz通道对大气进行联合探测,将获得更加精细的大气温湿度垂直分布数据,为数值预报和气候研究提供丰富信息.为保证MWHTS观测资料的定量应用,对仪器性能和定标精度进行了在轨测试.利用MWHTS在轨正常工作后的三个月数据,对仪器在轨定标的基础数据:冷空和黑体计数值,黑体和仪器温度进行监测分析和质量检验,经过质量检验的在轨定标基础数据,结合发射前真空试验得到的非线性订正项在轨定标生成MWHTS观测亮温数据.评估MWHTS在轨辐射定标结果的精度和偏差特性使用了三种方法:1通过场地定标试验获取大气温湿廓线和地面温度等大气参数信息,结合微波逐线正演辐射传输模式MonoRTM(MonochromaticRadiativeTransferModel)模拟MWHTS的上行微波辐射亮温,与MWHTS实际观测结果进行对比分析;2两个通道特性一致的同类星载被动微波载荷同时观测同一目标,观测亮温的差异主要取决于两个载荷的定标系统偏差.选取美国SNPP上搭载的微波探测仪器ATMS作为MWHTS的参考载荷,基于SNO(simultaneousnadiroverpass)技术,对两个仪器的观测亮温进行交叉比对,观测亮温时空匹配及均匀性检验的条件为:观测时间差异小于20min,观测像元中心距离小于3km,观测角度在星下点附近差异小于5°,观测像元周围3×3像元内的亮温标准差小于1K;3基于美国国家环境预测中心的全球数据同化系统GDAS(GlobalDataAssimilationSystem)数据,利用快速辐射传输模式CRTM(CommunityRadiativeTransferModel)对MWHTS各通道亮温进行正演模拟,模拟结果(O)和仪器实际观测的亮温(B)之间的差异记为"O-B",对偏差值"O-B"进行统计特征分析.仪器中心频率的变化、正演模式模拟精度和模式输入廓线自身的误差都会对"O-B"产生影响.但是对于首次使用的探测频点而言(如118.75GHz通道),由于国际上没有同类载荷可以进行交叉比对,借助于正演辐射传输模式计算得到"O-B"偏差的分析结果可以在一定程度上反映仪器整体定标情况.外场地定标试验结果显示除通道14外,其他14个通道的亮温差都在1.3K以内;与同类载荷ATMS的在轨观测进行直接交叉比对表明通道14与ATMS的亮温偏差最大,但中心频点一致的5个水汽探测通道的标准差都小于1K;将MWHTS观测结果和正演辐射传输模式模拟结果即"O-B"进行偏差分析显示,靠近118.75GHz吸收线中心的通道2—6"O-B"标准差小于0.5K,其他通道"O-B"标准差和ATMS相应通道的结果相当;MWHTS观测和模拟偏差随角度变化的研究表明通道1,7~13和15观测结果对角度有一定依赖性.

References

[1]  Bizzarri B, Albin J G, Staelin D H, et al. 2002. Requirements and perspectives for MW/sub-mmsounding from geostationary satellite.EUMETSAT Meteorological Satellite Conference, 97-105.
[2]  Bormann N, Fouilloux A, Bell W. 2013. Evaluation and assimilation of ATMS data in the ECMWF system.Journal of Geophysical Research: Atmospheres, 118(23): 12970-12980.
[3]  Cao C, Xu H, Sullivan J, et al. 2005. Intersatellite radiance biases for the High-ResolutionInfrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. Journal of Atmospheric & Oceanic Technology, 22(4): 381-395.
[4]  Chen H B. 1999.Remote sensing of the atmosphere with the millimeter and sub-millimeter wave radiometry from the space. Remote Sensing Technology and Application (in Chinese), 14(2): 49-54.
[5]  Chen H B, Lin L F. 2003.Numerical Simulation of Temperature Profile Retrievals from the Brightness Temperatures in 6 Channels near 118.75 GHz. Chinese Journal of Atmospheric Sciences (in Chinese), 27(5): 894-900.
[6]  Clough S A, Shephard M W, Mlawer E J, et al. 2005. Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2): 233-244.
[7]  Cui L L, Yang Y M, You R, et al. 2012. Applicationstudy of FY-3A/MWHS in quantitativeprecipitation estimation. Plateau Meteorology (in Chinese), 31(5): 1439-1445.
[8]  Du M B, Yang Y M, Yang Y H, et al. 2012.Bias correction for FY-3Amicrowave sounding data with its application to typhoon track forecast. Journal of Applied Meteorological Science (in Chinese), 23(1): 89-95.
[9]  Evans K F, Walter S J, Heymsfield A J, et al. 1998. Modeling of submillimeterpassive remote sensing of cirrus clouds. Journal of Applied Meteorology, 37(2): 184-205.
[10]  Evans K F, Evans A H, Marshall B T, et al. 1999. The prospect for remote sensing of cirrus clouds with a Submillimeterwave spectrometer. Journal of Applied Meteorology, 38: 514-525.
[11]  JPL.2012. AIRS Project. Algorithm Theoretical Basis Document.Level 1b, Part 3: Microwave Instruments. Version 2.1.10.
[12]  Karbou F, Gérard E, Rabier F. 2010. Global 4DVAR assimilation and forecast experiments using AMSU observations over land.Part I: Impacts of various land surface emissivity parameterizations. Weather and Forecasting, 25(1): 5-19.
[13]  Kim E, Lyu C H J, Anderson K, et al. 2014.S-NPP ATMS instrument Prelaunch and on-orbit performance evaluation. Journal of Geophysical Research: Atmospheres, 119(9): 5653-5670,doi: 10.1002/2013JD020483.
[14]  Leslie R V, Staelin D H. 2002. NPOESS aircraft sounder testbed-microwave: observations of clouds and precipitation at 54, 118, 183, and 425 GHz. IEEE Transactions on Geoscience and Remote Sensing, 42(10):2240-2247.
[15]  Lu Q F. 2011.Initial evaluation and assimilation of FY-3A atmospheric sounding data in the ECMWF System. Science China Earth Sciences, 54(10): 1453-1457.
[16]  NPP ATMS Science Team.2007. NPOESS Preparatory Project Advanced Technology Microwave Sounder (ATMS) Postlaunch Calibration and Validation Plan. Pubilicly accessible version.
[17]  Prigent C, Chevallier F, Karbou F, et al. 2005.AMSU-A land surface emissivity estimation for numerical weather prediction assimilation schemes. Journal of Applied Meteorology, 44(4): 416-426.
[18]  Prigent C, Pardo J R, Rossow W B. 2006. Comparisons of the millimeter and submillimeter bands for atmospheric temperatureand water vapor soundings for clear and cloudy skies. Journal of Applied Meteorologyand Climatology, 45(12): 1622-1633.
[19]  Qi C L, Chen Y, Liu H, et al. 2012. Calibration and Validation of the InfraRed Atmospheric Sounder Onboard the FY3B Satellite. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4903-4914.
[20]  Saunders R W, Hewison T J, Stringer S J, et al. 1995. The radiometric characterization of AMSU-B. IEEE Transactions on Microwave Theory and Techniques, 43(4): 760-771.
[21]  Staelin D H, Chen F W. 2000. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2322-2332.
[22]  Weng F Z, Han Y, van Delst P, et al. 2005.JCSDA community radiative transfer model (CRTM). Technical Proceedings of Fourteenth International ATOVS Study Conference.Beijing, China, 217-222.
[23]  Weng F Z. 2007. Advances in radiative transfer modeling in support ofsatellite data assimilation. Journal of the Atmospheric Sciences, 64(11): 3799-3807.
[24]  Weng F, Zou X, Wang X, et al. 2012. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. Journal of Geophysical Research: Atmospheres (1984—2012), 117(D19), doi: 10.1029/2012JD018144.
[25]  Weng F Z, Zou X L, Sun N H, et al. 2013. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. Journal of Geophysical Research: Atmospheres, 118(19): 11187-11200.
[26]  Yan B H, Weng F Z. 2008. Intercalibration between special sensor microwave imager/sounder and special sensor microwave imager. IEEE Transactions on Geoscience and Remote Sensing, 46(4): 984-995.
[27]  Yang H, Zou X L, Li X Q, et al. 2012.Environmental Data Records from FengYun-3B Microwave Radiation Imager. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4986-4993.
[28]  Yang Y M, Du M B, Zhang J. 2012. Experiments of assimilating FY-3Amicrowave data in forecast of typhoon morakot. Journal of Tropical Meteorology (in Chinese), 28(1): 23-30.
[29]  Zhang S W, Li J, Jiang J S, et al. 2008. Design and development of microwave humidity sounder for FY-3 meteorological satellite. Journal of Remote Sensing (in Chinese), 12(2): 199-207.
[30]  Zhao Y, Wang B, Ji Z Z, et al. 2005. Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data. Journal of Geophysical Research: Atmospheres (1984—2012), 110(D14): D14101, doi: 10.1029/2004JD005267.
[31]  Zou X, Wang X, Weng F, et al. 2011.Assessments of Chinese Fengyun microwave temperature sounder (MWTS) measurements for weather and climate applications. Journal of Atmospheric &Oceanic Technology, 28(10): 1206-1227.
[32]  Gu S Y, Guo Y, Wang Z Z, et al. 2012. Calibration analyses for sounding channels of MWHS onboard FY-3A. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4885-4891.
[33]  Harris B A, Kelly G. 2001. A satellite radiance-bias correction scheme for data assimilation. Quarterly Journal of the Royal Meteorological Society, 127(574): 1453-1468.
[34]  He J Y, Zhang S W. 2012. Humidity retrieval in mid-latitude and tropical regions using FY-3 MWHS. Journal of Remote Sensing (in Chinese),16(3): 562-578.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413