全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2014年2月12日Mw6.9于田地震震源破裂过程及对周围断层的应力影响

DOI: 10.6038/cjg20150116, PP. 184-193

Keywords: 2014年于田地震,同震破裂,库仑应力,地震危险性

Full-Text   Cite this paper   Add to My Lib

Abstract:

2014年2月12日,在新疆于田县发生了里氏7.3级地震.在该地震震中附近,前人研究证明发育了大量规模不同的活动断层(如康西瓦断裂与贡嘎错断裂等).根据地震触发理论,地震发生后因地壳同震变形会导致其周边不同性质断裂破裂应力发生变化,进而影响其地震的潜在危险性.本文利用地震远场波形记录,反演了该地震滑动模型.之后,根据弹性无限半空间位错理论,计算了该地震在近场范围内活动断裂上的同震应力变化.其目的在于讨论于田地震引起的附近断裂上的库仑应力变化以及这些活动断裂可能潜在的地震危险性.在地震发生后,从国际地震学联合会(IRIS)地震数据中心,下载了震中距离介于30°~90°的地震远场波形记录,为保证台站方位角分布均匀,从中挑选了27个不同方位角的高信噪比地震记录参与理论地震图的生成和波形反演过程.我们采用广义射线理论计算生成远场理论地震波形数据.每个子断层参数的反演则利用基于全局化反演的快速模拟退火反演方法.在有限断层反演过程中,我们采用了强调波形拟合的相关误差函数作为待反演的目标函数,拟合的断层参数使目标函数为最小.之后,根据弹性无限半空间位错理论,以库仑破裂准则为基础,结合反演得到的地震震源机制解和地震位错模型,计算该地震引起的近场断层面上库仑应力的变化.由远场波形计算结果可以看到,于田地震的震源深度为10km,地震断层的倾角约71.9°,破裂面上最大的同震位移达到210cm,以左旋走滑为主并具有正倾滑分量,地震能量主要在前15s内释放.由此得到该地震的地震矩为2.91×1019N·m,地震震级为Mw6.9.于田地震引发的余震,大致分布在三个区域内:普鲁断裂北部、康西瓦断裂东部和贡嘎错断裂中部.弹性应力计算结果表明,于田地震导致阿尔金断裂西段、普鲁断裂中段、康西瓦断裂东段和贡嘎错断裂中段的静态库仑应力明显增加,其中以康西瓦断裂东段和贡嘎错断裂中段应力增量为最大,分别达到了0.05MPa和0.04MPa.大量研究证明,当地震所导致的库仑应力变化大于0.01MPa时将具有明显的地震触发作用.根据本文结果,2014年于田Mw6.9地震使普鲁断裂、贡嘎错断裂和康西瓦断裂上的库仑应力增量均超过了触发阈值,具有被触发出地震的潜在危险.因此,在以后的地震学研究中,应加强对该三条断裂地震危险性的研究和监测.此外,近6年以来,研究区域发生了3次6级以上的地震.这些地震均沿着贡嘎错断裂,由南西向北东迁移,逐步靠近阿尔金断裂,并且逐渐由正倾滑型地震转变为走滑型地震.阿尔金断裂的走滑速率达到了9mm·a-1,所以,尽管本次地震导致的阿尔金断裂库仑应力增量小于0.01MPa,阿尔金的地震危险性也应该加强监测.

References

[1]  Barka A. 1999. The 17 august 1999 Izmit earthquake.Science, 285(5435): 1858-1859.
[2]  Chan C H, Stein R S. 2009. Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: consequences for afterslip, relaxation, aftershocks and departures from Omori decay. Geophysical Journal International, 177(1): 179-192.
[3]  Deng J S, Sykes L R. 1997. Stress evolution in southern California and triggering of moderate-, small-, and micro-size earthquakes. Journal of Geophysical Research: Solid Earth (1978—2012), 102(B11): 24411-24435.
[4]  Deng Q D, Zhang P Z, Ran Y K, et al. 2002. Basic feature of China active structures. Science in China (D Series) (in Chinese), 32(12): 1020-1030.
[5]  Gonzalez-Huizar H, Velasco A A. 2011. Dynamic triggering: Stress modeling and a case study. Journal of Geophysical Research: Solid Earth (1978—2012), 116(B2), doi: 10.1029/2009JB007000.
[6]  Segall P, Harris R. 1987. Earthquake deformation cycle on the San Andreas fault near Parkfield, California. Journal of Geophysical Research: Solid Earth (1978—2012), 92(B10): 10511-10525.
[7]  Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by Mw7.9 Wenchuan earthquake, May 12, 2008. Sci. China Earth Sci., 2009, 52(5):593-601.
[8]  Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by 2013 Lushan earthquake, and its relationship with 2008 Wenchuan earthquake. Science China (Earth Sciences), 2013, 56(7): 1169-1176, doi: 10. 1007/s11430-013-4642-1.
[9]  Shen Z K, Wang M, Li Y X, et al. 2001. Crustal deformation along the AltynTagh fault system, western China, from GPS. Journal of Geophysical Research: Solid Earth (1978—2012), 106(B12): 30607-30621.
[10]  Shimazaki K, Nakata T. 1980. Time-predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4): 279-282.
[11]  Wan Y G, Shen Z K, Sheng S Z, et al. 2010. The mechanical effects of the 2008 M7.3 Yutian, Xinjiang earthquake on the neighboring faults and itstectonic origin of normal faulting mechanism. ChineseJournal of Geophysics, 53(2): 280-289. doi:10.3969/j.issn.000i-5733.2010.02.006.
[12]  Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the Ms8.0 Wenchuan earthquake of Sichuan, China. Chinese J. Geophys. (in Chinese), 51(5): 1403-1410.
[13]  Yao Z X, Ji C.The inverse problem of finite fault study in time domain. Chinese J. Geophysics. (in Chinese), 1997,40(5):691-701.
[14]  Zhang G H, Shan X J, Li W D. The Coulomb failure stress change associated with the Ms8.0 Wenchuan earthquake and the risk prediction of its surrounding faults. Seismicity and Geology (in Chinese), 2008, 30(4):935-944.
[15]  Zhang G W, Lei J S, Sun C Q. 2013. Relocation of the 12 February 2014 Yutian, Xinjiang, mainshock (Ms7.3) and its aftershock sequence. Chinese J. Geophys. (in Chinese), 57(3):1012-1020, doi:10.6038/cjg20140330.
[16]  Ziv A, Rubin A M. 2000. Static stress transfer and earthquake triggering: No lower threshold in sight?. Journal of Geophysical Research: Solid Earth (1978—2012), 105(B6): 13631-13642.
[17]  Hao J L, Wang W M, Yao Z X, 2011. Source process of the 2011 Mw9.0 Tohuko Japan earthquake. Science China Earth Science (in Chinese), 41(6): 745-749, doi: 10.1007/s11430-011-4241-y.
[18]  Harris R A, Simpson R W. 1998. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. Journal of Geophysical Research: Solid Earth (1978—2012), 103(B10): 24439-24451.
[19]  He J,ChéryJ. 2008.Slip rates of the AltynTagh, the Kunlun and the Karakorum faults (Tibet) from 3D mechanical modeling. Earth and Planetary Science Letters, 274(1-2): 50-58.
[20]  He J,PeltzerG. 2010.Poroelastic triggering in the 9-22 January 2008 Nima-Gaize (Tibet) earthquake sequence. Geology, 38(10): 907-910.
[21]  He J K, VernantP, ChéryJ, et al. 2013. Nailing down the slip rate of the AltynTagh fault. Geophysical Research Letters, 40(20): 5382-5386.
[22]  Hong S Y, Shen X H, Shan X J, et al. The calculation and analysis of the co-seismic deformation field of Yutian Ms7.3 earthquake basing on the ascending and descending orbit ASAR data. Remote Sensing for Land & Resources (in Chinese), 2010,84(1):98-102.
[23]  Jia K, Zhou S, Wang R. 2012. Stress interactions within the strong earthquake sequence from 2001 to 2010 in the Bayankala block of eastern Tibet. Bulletin of the Seismological Society of America, 102(5): 2157-2164.
[24]  Jiang Tingchen, et al. Deformation analysis of Yutianearthquake based on ScanSARinterferometry. Journal of Geodesy and Geodynamics, 2012, (6):13-16
[25]  Johnson K M, Segall P, Yu S B. 2005. A viscoelastic earthquake cycle model for Taiwan. Journal of Geophysical Research: Solid Earth (1978—2012), 110(B10), doi: 10.1029/2004JB003516.
[26]  King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953.
[27]  Lasserre C, PeltzerG, CrampéF, et al. 2005.Coseismic deformation of the 2001 Mw=7.8 Kokoxiliearthquake in Tibet, measured by synthetic aperture radar interferometry. J. Geophys. Res., 110: B12408, doi: 10.1029/2004JB003500.
[28]  Li H B, Van der Woerd J, Sun Z M, et al. 2012. Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet. Gondwana Research, 21(1): 64-87.
[29]  Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth (1978—2012), 109(B2), doi: 10.1029/2003JB002607.
[30]  Liu C L, Zheng Y, Ge C, et al. 2013.Rupture process of the M7.0 Lushan earthquake. Science in China (Ser D), 43(6): 1020-1026.
[31]  MériauxA S, Ryerson F J, Tapponnier P, et al. 2004. Rapid slip along the central AltynTagh Fault: Morphochronologic evidence from Cherchen He and SulamuTagh. J. Geophys. Res, 109(B6): B06401, doi: 10.1029/2003JB002558.
[32]  McCloskey J, Nalbant S S, Steacy S. 2005. Indonesian earthquake: Earthquake risk from co-seismic stress. Nature, 434(7031): 291-291.
[33]  Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203): 509-510.
[34]  Robinson D P, Brough C, Das S. 2006. The Mw7.8, 2001 Kunlunshan earthquake: Extreme rupture speed variabilityand effect of fault geometry. J. Geophys. Res., 111(B8): B08303, doi: 10.1029/2005JB004137.
[35]  Savage J C. 2000.Viscoelastic-coupling model for the earthquake cycle driven from below. Journal of Geophysical Research: Solid Earth (1978—2012), 105(B11): 25525-25532.
[36]  Stein R S, King G C P, Lin J. 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake. Science, 258(5086): 1328-1332.
[37]  Stein R S, King G C P, Lin J. 1994. Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors.Science, 265(5177): 1432-1435.
[38]  Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3): 594-604.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413