全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2013年8月香格里拉德钦—得荣MS5.9地震序列震源机制与应力场特征

DOI: 10.6038/cjg20150207, PP. 424-435

Keywords: 香格里拉德钦-得荣地震,震源机制解,CAP方法,正断层型地震

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用中国区域台网地震波形记录,采用CAP方法反演了香格里拉德钦(位于云南省)—得荣(属于四川省)2013年8月28日MS5.1、8月31日MS5.9地震及8次MS>4余震的震源双力偶断层面解和震源质心深度.结合震区地质构造、余震分布、烈度分布、动力学背景等资料,分析了此次地震序列的震源机制和应力场特征.反演结果表明,此次地震序列为节面倾角倾斜的正断层型地震,发震断层为NWW向活动构造带.序列中最大地震MS5.9和次大地震MS5.1地震的破裂节面分别为走向299°、倾角53°、滑动角-73°;走向290°、倾角55°、滑动角-72°.震源区受到强烈的水平拉张力、垂直挤压力作用.MS5.9地震后续余震T、P轴方位角随时间变化强烈,表明MS5.9地震后震源区应力调整作用明显.震源区应力场反演结果显示,地震发生的构造带上最大主拉应力为NNE-SSW向,最大主压应力为NW-SE向,与GPS观测所反映的地表最大主应力分布方向基本一致,表明震源区的应力状态可能主要受到背景大尺度构造应力场的控制.此次地震序列填充了川滇地区震源机制及应力场的空间分布图像,1976年以来可靠的震源机制解资料表明香格里拉次级块体是川滇块体及周边区域显著的拉张作用区域.香格里拉次级块体和保山次级块体正断层地震的断层节面及震源应力轴分布的空间变化,与GPS观测反映的地表最大主拉应力分布较一致,其空间分布特征反映了在青藏高原物质挤出背景下,块体之间相互作用、地势差异等作用对构造活动的影响.

References

[1]  Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America. Eos Trans AGU, 81: F897.
[2]  Cheng J, Xu X W, Gan W J, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese J. Geophys. (in Chinese), 55(4): 1198-1212, doi:10.6038/j.issn.0001-5733.2012.04.016.
[3]  Cheng W Z, Diao G L, Lü G P, et al. 2003. Focal mechanisms, displacement rate and mode of motion of the Sichuan-Yunnan Block. Seismology and Geology (in Chinese), 25(1): 71-87.
[4]  Cui X F, Xie F R, Zhang H Y. 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest. Acta Seismologica Sinica (in Chinese), 28(5): 451-461.
[5]  Gan W J, Zhang P Z, Shen Z K, at el. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8): B08416, doi: 10.1029/2005JB004120.
[6]  Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res., 89(B11): 9305-9320.
[7]  Gephart J W. 1990. Stress and the direction of slip on fault planes. Tectonics, 9(4): 845-858.
[8]  Long F, Zhang Y J, Wen X Z, et al. 2010. Focal mechanism solutions of ML≥4.0 events in the Ms6.1 Panzhihua-Huili earthquake sequence of Aug 30, 2008. Chinese J. Geophys. (in Chinese), 53(12): 2852-2860, doi: 10.3969/j.issn.0001-5733.2010.12.008.
[9]  Luo J, Zhao C P, Zhou L Q. 2014. Characteristics of focal mechanisms and stress field of the Chuan-Dian rhombic block and its adjacent regions. Seismology and Geology (in Chinese), 36(2): 405-421.
[10]  Luo Y, Ni S D, Zeng X F, et al. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science in China (Series D): Earth Science (in Chinese), 53(11): 1655-1664.
[11]  Lü J, Zheng X F, Xiao J, et al. 2013. Rupture characteristics and seismogenic structures of the Ms5.7 and Ms5.6 Yiliang earthquake of Sep. 7, 2012. Chinese J. Geophys. (in Chinese), 56(8): 2645-2654, doi: 10.6038/cjg20130814.
[12]  Shen J, Wang Y P, Ren J W. 2001. The Quaternary right-lateral strike-slipping on the Deqin-Zhongdian-Daju Fault zone in Yunnan, China. // Ma Z J ed. Study on Recent Deformation and Dynamics of the Lithosphere of Qinghai-Xizang Plateau (in Chinese). Beijing: Seismological Press,123-135.
[13]  Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. doi: 10.1126/Science.105978.
[14]  Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China (Series D): Earth Science (in Chinese), 51(9): 1267-1283.
[15]  Wei S J, Zhan Z, Tan Y, et al. 2012. Locating earthquakes with surface waves and Centroid moment tensor estimation. J. Geophys. Res., 117(B4): B04309, doi: 10.1029/2011JB008501.
[16]  Wessel P, Smith W H F. 1991. Free software helps map and display data. Eos, Transactions American Geophysical Union, 72(41): 441-446.
[17]  Xie F R, Zhu J Z, Liang H Q, et al. 1993. The basic characteristics of recent tectonic stress field in southwest region of China. Acta Seismologica Sinica (in Chinese),15(4): 407-417.
[18]  Xu Y, Herrmann R B, Koper K D. 2010. Source parameters of regional small-to-moderate earthquakes in the Yunnan-Sichuan region of China. Bull. Seis. Soc. Am., 100(5B): 2518-2531.doi: 10.1785/0120090195.
[19]  Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7-22, doi: 10.1016/j.tecto.2012.02.021.
[20]  Zhao L, Luo Y, Liu T Y, et al. 2013. Earthquake focal mechanisms in Yunnan and their inference on the regional stress field. Bull. Seis. Soc. Am., 103(4): 2498-2507.doi: 10.1785/0120120309.
[21]  Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bull. Seis. Soc. Am., 84(1): 91-104.
[22]  Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Center for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(5):1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[23]  Zheng Y, Ma H S, Lü J, et al. 2009. Source mechanism of strong aftershocks (Ms≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China (Series D): Earth Science (in Chinese), 52(6): 739-753.
[24]  Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bull. Seis. Soc. Am., 86(5): 1634-1641.
[25]  Zhu L P, Helmberger D V, Saikia C K, et al. 1997. Regional waveform calibration in the Pamir-Hindu Kush region. J. Geophys. Res., 102(B10): 22799-22813.
[26]  Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int., 148(3): 619-627.
[27]  Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res., 97(B8): 11703-11728.
[28]  Shen J, Wang Y P, Ren J W, et al. 2003. Quaternary dextral shearing and crustal movement in southeast Tibetan Plateau. Xinjiang Geology (in Chinese), 21(1): 120-125.
[29]  Shen Z K, Lü J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res., 110(B11): B11409, doi: 10.1029/2004JB003421.
[30]  Socquet A, Pubellier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border). Journal of Asian Earth Science, 24(4): 495-515.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413