全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GRACE重力卫星探测南极冰盖质量平衡及其不确定性

DOI: 10.6038/cjg20150308, PP. 780-792

Keywords: 南极冰盖,质量平衡,GRACE,不确定性,后处理方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

2002年GRACE重力卫星的成功发射为南极冰盖质量平衡的研究提供了重力探测的新纪元.本文利用美国德克萨斯大学CSR公布的2003年1月到2013年12月期间的RL05版本GRACE月重力场数据,采用最优平均核函数法和组合滤波法两种GRACE后处理方法反演了南极冰盖质量的时空变化.结果表明:在2003—2013年期间南极冰盖物质平衡呈明显的负增长状态,质量变化趋势为-163±50Gt/a(GW13)、-129±41Gt/a(IJ05)、-81±27Gt/a(W12a),加速度为-8±10Gt/a2,质量消融的主要区域分布在西南极阿蒙森海岸和南极半岛的北部.另外本文还重点探讨了可能影响到估算结果的各项误差及不确定性,分析结果显示影响南极冰盖质量平衡估算结果的最大误差源为GIA改正.通过假设检验和信息准则对时间序列分析中拟合参数的合理选取进行了探讨和分析,在联合周年项、半年项和S2、K2、K1潮汐混频项进行拟合分析时发现K1项对拟合结果的加速度影响比其他周期项稍大,尽管考虑该项的合理性因当前GRACE数据时间序列长度有限而无法确切证实,但K1项的影响值得后续关注.对比两种GRACE后处理方法的结果发现:当采用的数据时间跨度一致,误差改正方法相同,两种相异的后处理方法,其估算结果也具有较好的一致性.

References

[1]  Ivins E R, James T S. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Sci., 17(4): 541-553.
[2]  Jacob T, John W, Pfeffer W T, et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7686): 514-518.
[3]  Jia L L, Wang H S, Xiang L W, et al. 2011. Effects of glacial isostatic adjustment on the estimate of ice mass balance over Antarctica and the uncertainties. Chinese J. Geophys. (in Chinese), 54(6): 1466-1477, doi: 10.3969/j.issn.0001-5733.2011.06.006.
[4]  Ju X L, Shen Y Z, Zhang Z Z. 2013. Antarctic ice mass change analysis based on GRACE RL05 data. Chinese J. Geophys. (in Chinese), 56(9): 2918-2927, doi: 10.6038/cjg20130906.
[5]  King M A, Bingham R J, Moore P, et al. 2012. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491(7425): 586-589.
[6]  Krinner G, Magand O, Simmonds I, et al. 2007. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dyn., 28(2-3): 215-230.
[7]  Kusche J. 2007. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., 81(11): 733-749.
[8]  Li J C, Fan C B, Chu Y H, et al. 2008. Using ICESat altimeter data to determine the Antarctic ice sheet elevation model. Geomatics and Information Science of Wuhan University (in Chinese), 33(3): 226-228, 248.
[9]  Luo Z C, Li Q, Zhang K, et al. 2012. Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field. Sci. China: Earth Sci., 55(1): 76-82.
[10]  Luthcke Scott B, Sabaka T J, Loomis B D, et al. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59(216): 613-631.
[11]  Pritchard H D, Arthern R J, Vaughan D G, et al. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266): 971-975.
[12]  Ray R D, Luthcke S B. 2006. Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys. J. Int., 167(3): 1055-1059.
[13]  Rignot E, Bamber J, Van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1(2): 106-110.
[14]  Rignot E, Thomas R H. 2002. Mass balance of polar ice sheets. Science, 297(5586): 1502-1506.
[15]  Rignot E, Velicogna I, Van den Broeke M, et al. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5): L05503, doi:10.1029/2011GL046583.
[16]  Rodell M, Houser P R, Wilson C R, et al. 2004. The global land data assimilation system. Bull. Amer. Meteor. Soc., 85(3): 381-394.
[17]  Sasgen I, Konrad H, Ivins E, et al. 2012. Antarctic ice-mass balance 2002 to 2011: regional re-analysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment. The Cryosphere Discuss, 6: 3703-3732.
[18]  Shen Q, Chen G, E D C, et al. 2011. Recent elevation changes on the Lambert-Amery system in East Antarctica from ICESat crossover analysis. Chinese J. Geophys. (in Chinese), 54(8): 1983-1989, doi: 10.3969/j.issn.0001-5733.2011.08.005.
[19]  Shi H L, Lu Y, Bao L F, et al. 2009. Recent elevation change detection of Enderby land ice sheet using ICESat crossover analysis. Geomatics and Information Science of Wuhan University (in Chinese), 34(4): 440-443.
[20]  Shi H L, Lu Y, Du Z L, et al. 2011. Mass change detection in Antarctic ice sheet using ICESat block analysis techniques from 2003—2008. Chinese J. Geophys. (in Chinese), 54(4): 958-965, doi: 10.3969/j.issn.0001-5733.2011.04.010.
[21]  Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113(B8): B08410, doi: 10.1029/2007JB005338.
[22]  Swenson S, Wahr J, Milly P. 2003. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 39(8): 1223, doi: 10.1029/2002WR001808.
[23]  Swenson S, Wahr J. 2002. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107(B9): ETG 3-1-ETG 3-13.
[24]  Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33(8): L08402, doi: 10.1029/2005GL025285.
[25]  Syed T H, Famiglietti J S, Rodell M, et al. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44(2): W02433, doi: 10.1029/2006WR005779.
[26]  Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305(5683): 503-505.
[27]  Thomas M. 2002. Ocean induced variations of Earth''s rotation-Results from a simultaneous model of global ocean circulation and tides [Ph. D. thesis]. Hamburg: University of Hamburg.
[28]  Arthern R J, Winebrenner D P, Vaughan D G. 2006. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res., 111(D6): D06107, doi: 10.1029/2004JD005667.
[29]  Baur O. 2012. On the computation of mass-change trends from GRACE gravity field time-series. J. Geodyn., 61: 120-128.
[30]  Bettadpur S. 2007. UTCSR Level-2 gravity field product user handbook, GRACE 327-734, Center for Space Research. Austin: The University of Texas at Austin.
[31]  Boening C, Lebsock M, Landerer F, et al. 2012. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39(21): L21501, doi: 10.1029/2012GL053316.
[32]  Chen J L, Wilson C R, Blankenship D, et al. 2009. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2(12): 859-862.
[33]  Cheng M K, Tapley B D. 2004. Variations in the Earth''s oblateness during the past 28 years. J. Geophys. Res., 109(B9): B09402, doi: 10.1029/2004JB003028.
[34]  Ding M H. 2013. An up to date review on the mass balance over Antarctica. Progress in Geophys. (in Chinese), 28(1): 24-35, doi: 10.6038/pg20130104.
[35]  Duan X J, Guo J Y, Shum C K, et al. 2009. On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J. Geod., 83(11): 1095-1106.
[36]  E D C, Yang Y D, Chao D B. 2009. The sea level change from the Antarctic ice sheet based on GRACE. Chinese J. Geophys. (in Chinese), 52(9): 2222-2228, doi: 10.3969/j.issn.0001-5733.2009.09.005.
[37]  Feng W, Lemoine J M, Zhong M, et al. 2012. Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002-2010. Chinese J. Geophys. (in Chinese), 55(3): 814-821, doi: 10.6038/j.issn.0001-5733.2012.03.011.
[38]  Feng W. 2013. Regional terrestrial water storage and sea level variations inferred from satellite gravimetry [Ph. D. thesis](in Chinese). Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences.
[39]  Geruo A, Wahr J, Zhong S J. 2013. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192(2): 557-572.
[40]  Gunter B, Urban T, Riva R, et al. 2009. A comparison of coincident GRACE and ICESat data over Antarctica. J. Geod., 83(11): 1051-1060.
[41]  Helsen M, Van den Broeke M, Van de Wal R, et al. 2008. Elevation changes in Antarctica mainly determined by accumulation variability. Science, 320(5883): 1626-1629.
[42]  Huybrechts P, Steinhage D, Wilhelms F, et al. 2000. Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Ann. Glaciol., 30(1): 52-60.
[43]  IPCC. 2013. Climate Change 2013: The Physical Science Basis. Chapter 4: Observations: Cryosphere. Coordinating Lead Authors: Vaughan D G, Comiso J C; Lead Authors: Allison I, Carrasco J, Kaser G, et al. Working Group 1 Contribution to the IPCC Fifth Assessment Report (AR5), 102-124.
[44]  Turner J, Connolley W M, Leonard S, et al. 1999. Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF re-analysis project data. Int. J. Climatol., 19(7): 697-724.
[45]  Van de Berg W J, Van den Broeke M R, Reijmer C H, et al. 2005. Characteristics of the Antarctic surface mass balance,1958—2002, using a regional atmospheric climate model. Ann. Glaciol., 41(1): 97-104.
[46]  Van de Berg W J, Van den Broeke M R, Reijmer C H, et al. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11): D11104, doi: 10.1029/2005JD006495.
[47]  Van den Broeke M R, Van de Berg W J, Van Meijgaard E. 2006. Snowfall in coastal West Antarctica much greater than previously assumed. Geophys. Res. Lett., 33(2): L02505, doi: 10.1029/2005GL025239.
[48]  Velicogna I, Wahr J. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768): 1754-1756.
[49]  Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophys. Res. Lett., 40(12): 3055-3063, doi: 10.1002/grl.50527.
[50]  Velicogna I. 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36(19): L19503, doi: 10.1029/2009GL040222.
[51]  Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth''s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103(B12): 30205-30229.
[52]  Wahr J, Swenson S, Velicogna I. 2006. Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33(6): L06401, doi: 10.1029/2005GL025305.
[53]  Wang H S, Wu P. 2006. Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced relative sea levels and long wavelength gravity field in a spherical, self-gravitating Maxwell Earth. Earth Planet. Sci. Lett., 249(3-4): 368-383.
[54]  Whitehouse P L, Bentley M J, Le Brocq A M. 2012a. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev., 32: 1-24.
[55]  Whitehouse P L, Bentley M J, Milne G A, et al. 2012b. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int., 190(3): 1464-1482.
[56]  Zhan J G, Wang Y, Hao X G. 2011. Improved method for removal of correlated errors in GRACE data. Acta Geodaetica et Cartographica Sinica (in Chinese), 40(4): 442-446, 453.
[57]  Zhang Z Z, Chao B, Lu Y, et al. 2009. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys. Res. Lett., 36(17): L17311, doi: 10.1029/2009GL039459.
[58]  Zhang Z Z, Chen J L, Chao B F, et al. 2013. Recovering the filtered GRACE TVG signal by iterative method with application to mass change in Antarctic. San Francisco: AGU, 9-13, G23A-0777.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413