全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂场源形态的海洋可控源电磁三维正演

DOI: 10.6038/cjg20150330, PP. 1059-1071

Keywords: 海洋可控源电磁法,三维正演,有限长线源,场源形态

Full-Text   Cite this paper   Add to My Lib

Abstract:

在使用电偶极发射源的可控源电磁法(CSEM)勘探中,发射源的方位、长度、形状等对观测数据有重要的影响,然而现有的大部分三维数值模拟方法没有全面地将这些因素考虑进来,很多都只能应对非常简单的场源形态,例如单一方位的点电偶极子,这有可能显著降低模拟结果的准确性.本文实现了基于交错网格有限体积(FV)离散的海洋CSEM三维正演算法,能够模拟形态相对复杂的场源,包括任意方位的有限长直导线和弯曲导线发射源.该算法使用一次场/二次场方法,只需对二次场使用FV法求解,避免了场源的奇异性问题;一次场的计算为一维正演问题,使用准解析法求解,并且只要在计算一次场时考虑复杂的场源形态便可以实现同样场源的三维正演.通过与一维理论模型的解析解对比验证了三维程序的准确性,并针对三维理论模型进行了一系列正演测试,初步考察了场源形态对三维正演结果的影响.

References

[1]  Mittet R. 2010. High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields. Geophysics, 75(1): F33-F50.
[2]  Mukherjee S, Everett M E. 2011. 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities. Geophysics, 76(4): F215-F226.
[3]  Newman G A, Alumbaugh D L. 1995. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8): 1021-1042.
[4]  Puzyrev V, Koldan J, Puente J, et al. 2013. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophys. J. Int., 193(2): 678-693.
[5]  Saad Y. 2003. Iterative Methods for Sparse Linear Systems. 2nd ed. New York: Society for Industrial and Applied Mathematics.
[6]  Schwarzbach C, Borner R U, Spitzer K. 2011. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example. Geophys. J. Int., 187(1): 63-74.
[7]  Shen J S. 2003. Modeling of 3-D electromagnetic responses in frequency domain by using staggered-grid finite difference method. Chinese J. Geophys. (in Chinese), 46(2): 281-289.
[8]  Siripunvaraporn W. 1999. An efficient data-subspace two-dimensional magnetotelluric inversion and its application to high resolution profile across the San Andreas Faults at Parkfield, California. Corvallis: Oregon State University.
[9]  Streich R. 2009. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics, 74(5): F95-F105.
[10]  Streich R, Michael B. 2011. Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions. Geophysical Prospecting, 59(2): 361-374.
[11]  Tang J T, Ren Z Y, Hua X R. 2007. The forward modeling and inversion in geophysical electromagnetic field. Progress in Geophysics (in Chinese), 22(4): 1181-1194, doi: 10.3969/j.issn.1004-2903.2007.04.025.
[12]  Ward S H, Hohmann G W. 1988. Electromagnetic theory for geophysical applications. // Nabighian M ed. Electromagnetic Methods in Applied Geophysics. SEG, 131-311.
[13]  Weiss C J, Newman G A. 2002. Electromagnetic induction in a fully 3-D anisotropic earth. Geophysics, 67(4): 1104-1114.
[14]  Weiss C J, Constable S C. 2006. Mapping thin resistors and hydrocarbons with marine EM methods, Part Ⅱ — Modeling and analysis in 3D. Geophysics, 71(6): G321-G332.
[15]  Yang B, Xu Y X, He Z X, et al. 2012. 3D frequency-domain modeling of marine controlled-source electromagnetic responses with topography using finite volume method. Chinese J. Geophys. (in Chinese), 55(4): 1390-1399, doi: 10.6038/j.issn.0001-5733.2012.04.035.
[16]  Yee K S. 1966. Numerical solution of initial boundary value problems involving Maxwell''s equations in isotropic media. IEEE Trans. Ant. Prop., 14(3): 302-307.
[17]  Zaslavsky M, Druskin V, Davydycheva S, et al. 2011. Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems. Geophysics, 76(2): F123-F137.
[18]  Avdeev D B. 2005. Three-dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics, 26(6): 767-799.
[19]  Avdeev D, Knizhnik S. 2009. 3D integral equation modeling with a linear dependence on dimensions. Geophysics, 74(5): F89-F94.
[20]  Badea E A, Everett M E, Newman G A, et al. 2001. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3): 786-799.
[21]  B?rner R U. 2010. Numerical modelling in Geo-Electromagnetics: advances and challenges. Surveys in Geophysics, 31(2): 225-245.
[22]  Constable S, Srnka L J. 2007. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2): WA3-WA12.
[23]  Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75(5): A67-A81.
[24]  Constable S C, Weiss C J. 2006. Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling. Geophysics, 71(2): G43-G51.
[25]  da Silva N V, Morgan J V, MacGregor L, et al. 2012. A finite element multifrontal method for 3D CSEM modeling in the frequency domain. Geophysics, 77(2): E101-E115.
[26]  Davis P J, Rabinowitz P. 2007. Methods of Numerical Integration. 2nd ed. New York: Dover Publications.
[27]  Edwards N. 2005. Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surveys in Geophysics, 26(6): 675-700.
[28]  Haber E, Ascher U M. 2001. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM Journal on Scientific Computing, 22(6): 1943-1961.
[29]  Key K. 2009. 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2): F9-F20.
[30]  Key K. 2012a. Marine electromagnetic studies of seafloor resources and tectonics. Surveys in Geophysics, 33(1): 135-167.
[31]  Key K. 2012b. Is the fast Hankel transform faster than quadrature? Geophysics, 77(3): F21-F30.
[32]  Li J H, Hu X Y, Zeng S H, et al. 2013. Three-dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation. Chinese J. Geophys. (in Chinese), 56(12): 4256-4267, doi: 10.6038/cjg20131228.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413