全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于形变观测分析2011年日本9.0级地震与断层运动间关系

DOI: 10.6038/cjg20150315, PP. 857-871

Keywords: 日本9.0级地震,GPS观测,地壳变形,反演,断层运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

2011年3月11日日本发生9.0级地震,本文以此次地震的震间、同震和震后形变观测为约束,依据不同时段断层运动空间分布特征分析日本海沟地区强震与断层运动间关系.震间日本海沟地区,断层运动闭锁线深度约为60km,闭锁线以上从深到浅依次为断层运动强闭锁段、无震滑移段和弱闭锁段.由同震位错反演结果,2011年日本9.0级地震同震存在深浅两个滑移极值区,同震较浅的滑移极值区(同震位错量10~50m,深度小于30km)震间为断层弱闭锁段;同震较深的滑移极值区(同震位错量10~20m,深度在40km左右)震间为断层强闭锁段;而在两者之间的过渡带同震位错相对较小,震间断层运动表现为无震滑移.震后初期断层运动主要分布在在闭锁线以上的同震较深滑移极值区,而同震较浅的滑移极值区能量释放比较彻底,断层震后余滑量相对较小.依据本文同震和震间断层运动反演结果,震间强闭锁段积累10m同震位错需要100多年时间,与该区域历史上7级地震活动复发周期相当;震间弱闭锁段积累30~50m同震位错约需要300~600年时间,与相关研究给出的日本海沟9级左右地震复发周期比较一致.在实际孕震能力判定的工作中,由于不同性质的断层段在同震过程中会表现更多的组合形式,断层发震能力判定结果存在更多的不确定性,但利用区域形变观测等资料给出震间断层运动特征的研究工作对于断层强震发震能力的判定具有非常重要的实际意义.

References

[1]  Hayes G P, Wald D J, Johnson R L. 2012. Slab 1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res., 117(B1): B01302, doi: 10.1029/2011JB008524.
[2]  Hirose F, Miyaoka K, Hayashimoto N, et al. 2011. Outline of the 2011 off the Pacific coast of Tohoku earthquake(MW9.0)-seismicity: foreshocks, mainshock, aftershocks, and induced activity. Earth Planets Space, 63(7): 513-518.
[3]  Iinuma T, Hino R, Kido M, et al. 2012. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res., 117(B7): B07409, doi: 10.1029/2012JB009186.
[4]  Kanamori H. 1977. Seismic and aseismic slip along subduction zones and their tectonic implications. // Talwani M, Pitman W C III, eds. Island Arcs, Deep Sea Trenches and Back Arc Basins. New York: American Geophysical Union, 163-174.
[5]  Kanamori H, Miyazawa M, Mori J. 2006. Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth Planets Space, 58(12): 1533-1541.
[6]  Kido M, Osada Y, Fujimoto H, et al. 2011. Trenchnormal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(24): L24303, doi: 10.1029/2011GL050057.
[7]  Kodair S, No T, Nakamura Y, et al. 2012. Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5(9): 646-650, doi: 10.1038/NGEO1547.
[8]  Koketsu K, Yokota Y, Nishimura N, et al. 2011. A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett., 310(3-4): 480-487, doi: 10.1016/j.epsl.2011.09.009.
[9]  Kuroishi Y, Sagiya T, Sengoku A, et al. 2007. Report of the geodetic works in Japan for the period January 2003 to December 2006.http://www.soc.nii.ac.jp/geo-soc/iugg2007.
[10]  Lay T, Ammon C J, Kanamori H, et al. 2011. Possible large near trench slip during the 2011 MW9.0 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7): 687-692, doi: 10.5047/eps.2011.05.033.
[11]  Loveless J P, Meade B J. 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res., 115(B2), doi: 10.1029/2008JB006248.
[12]  Loveless J P, Meade B J. 2011. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW9.0 Tohoku-oki earthquake. Geophys. Res. Lett., 38(17): doi: 10.1029/2011GL048561.
[13]  Madariaga R, Métois M, Vigny C, et al. 2010. Central Chile finally breaks. Science, 328(5975): 181-182, doi: 10.1126/science.1189197.
[14]  Marone C. 1998. Laboratory-derived friction and their application to seismic faulting. Annu. Rev. Earth Planet. Sci., 26: 643-696.
[15]  Miura S, Takahashi N, Nakanishi A, et al. 2005.. Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics, 407(3-4): 165-188.
[16]  Miyazaki S, McGuire J J, Segall P. 2011. Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space, 63(7): 637-642.
[17]  Moreno M, Rosenau M, Oncken O. 2010. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312): 198-204, doi: 10.1038/nature09349.
[18]  Nakajima J, Hasegawa A. 2006. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: reactivation of subducted fracture zone? Geophys. Res. Lett., 33(16): L16309, doi: 10.1029/2006GL026773.
[19]  Nishimura T, Hirasawa T, Miyazaki S, et al. 2004. Temporal change of interplate coupling in northeastern Japan during 1995—2002 estimated from continuous GPS observations. Geophys. J. Int., 157(2): 901-916, doi: 10.1111/j.1365-246X.2004.02159.x.
[20]  Noda H, Lapusta N. 2013. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433): 518-523, doi: 10.1038/nature11703.
[21]  Ozawa S, Nishimura T, Suito H, et al. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356): 373-377, doi: 10.1038/nature10227.
[22]  Ozawa S, Nishimura T, Munekane H, et al. 2012. Preceding, coseismic, and postseismic slip of the 2011 Tokoku earthquake, Japan. J. Geophys. Res., 117(B7): B07404, doi: 10.1029/2011JB009120.
[23]  Pollitz F F, Bürgmann R, Banerjee P. 2011. Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett., 38(7): L00G08, doi: 10.1029/2011GL048632.
[24]  Prawirodirdjo L, McCaffrey R, Chadwell C D, et al. 2010. Geodetic observations of an earthquake cycle at the Sumatra subduction zone Role of interseismic strain segmentation. J. Geophys. Res., 115(B3), doi: 10.1029/2008JB006139.
[25]  Ammon J C, Lay T, Kanamori H, et al. 2011. A rupture model of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space, 63(7): 693-696, doi: 10.5047/eps.2011.05.015.
[26]  Ando R, Imanishi K. 2011. Possibility of MW9.0 mainshock triggered by diffusional propagation of after-slip from MW7.3 foreshock. Earth Planets Space, 63(7): 767-771.
[27]  Chen P F, Bina C R, Okal E A. 2004. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophys. J. Int., 159(2): 721-733.
[28]  Chu R S, Wei S J, Helmberger D V, et al. 2011. Initiation of the great MW9.0 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 308: 277-283, doi: 10.1016/j.epsl.2011.06.031.
[29]  Department of Earthquake Monitoring and Prediction, China Earthquake Administrition. 2007. Summary of the Asian Earthquake (in Chinese). Beijing: Seismological Press.
[30]  Diao F Q, Xiong X, Wang R J, et al. 2014. Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake. Geophys. J. Int., 196(1): 218-299, doi: 10.1093/gji/ggt376.
[31]  Diao F Q, Xiong X, Ni S D, et al. 2011. Slip model for the 2011 MW9.0 Sendai (Japan) earthquake and its MW7.9 aftershock derived from GPS data. Chinese Sci. Bull., 56(27): 2941-2947, doi: 10.1007/s11434-011-4643-4.
[32]  Diao F Q, Xiong X, Zheng Y. 2012. Static slip model of the MW9.0 Tohoku (Japan) earthquake: results from joint inversion of terrestrial GPS data and seafloor GPS/acoustic data. Chinese Sci. Bull., 57(16): 1990-1997, doi: 10.1007/s11434-5014-5.
[33]  Hashimoto C, Noda A, Sagiya T, et al. 2009. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2): 141-144, doi: 10.1038/NGEO421.
[34]  Hayes G P, Wald D J. 2009. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: A probabilistic approach. Geophys. J. Int., 176(3): 951-964, doi: 10.1111/j.1365-246X.2008.04035.x.
[35]  Hayes G P, Wald D J, Keranen K. 2009. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher order functional fits. Geochem., Geophys., Geosyst., 10(9): Q09006, doi: 10.1029/2009GC002633.
[36]  Hayes G P. 2011. Updated Result of the Mar 11, 2011 MW9.0 Earthquake Offshore Honshu, Japan. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php.
[37]  Kiser E, Ishii M. 2012. The March 11, 2011 Tohoku-Oki earthquake and cascading failure of the plate interface. Geophys. Res. Lett., 39(7): L00G25, doi: 10.1029/2012GL051170.
[38]  Sagiya T, Miyazaki S, Tada T. 2000. Continuous GPS array and present-day crustal deformation of Japan. Pure and Applied Geophysics, 157(11-12): 2303-2322.
[39]  Sagiya T. 2004. A decade of GEONET: 1994—2003—the continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space, 56(8): XXIX-XLI.
[40]  Sato M, Ishikawa T, Ujihara N. 2011. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science, 332(6036): 1395, doi: 10.1126/science.1207401.
[41]  Scholz C H. 1998. Earthquakes and friction laws. Nature, 391(6662): 37-42.
[42]  Shao G F, Li X Y, Ji C, et al. 2011. Focal mechanism and slip history of the 2011 MW9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space, 63(7): 559-564, doi: 10.5047/eps.2011.06.028.
[43]  Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annu. Rev. Earth Planet. Sci., 29: 109-134.
[44]  Tajima F, Mori J, Kennett B L N. 2013. A review of the 2011 Tohoku-Oki earthquake (MW9.0): large-scale rupture across heterogeneous plate coupling. Tectonophysics, 586: 15-34
[45]  Takeuchi M, Sato T, Shinbo T. 2008. Stress due to the interseismic back slip and its relation with the focal mechanisms of earthquakes occurring in the Kuril and northeastern Japan arcs. Earth Planets Space, 60(6): 549-557.
[46]  The Headquarters for Earthquake Research Promotion. 2005. Summary of long-term evaluation of trench-type earthquakes. http://www.jishin.go.jp/main/p_hyoka02_chouki.htm.
[47]  Tse S T, Rice J R. 1986. Crustal earthquake instability in relation to the depth variation of friction slip properties. J. Geophys. Res., 91(B9): 9452-9472
[48]  Uchida N, Matsuzawa T. 2011. Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data. Earth Planets Space, 63(7): 675-679, doi: 10.5047/eps.2011.07.006.
[49]  Vigny C, Socquet A, Peyrat S, et al. 2011. The 2010 MW8.8 Maule megathrust earthquake of central chile, monitored by GPS. Science, 332(6036): 1417-1421, doi: 10.1126/science.1204132.
[50]  Wang R, Xia Y, Grosser H, et al. 2004. The 2003 Bam (SE Iran) earthquake: precise source parameters from satellite radar Interferometry. Geophys. J. Int., 159(3): 917-922, doi: 10.1111/j.1365-246X.2004.02476.x.
[51]  Ward S N, Barrientos S E. 1986. An inversion for slip distribution and fault shape from geodetic observations of 1983, Borah Peak, Idaho, earthquake. J. Geophys. Res., 91(B5): 9409-4919.
[52]  Yamaoka K. 2007. Earthquakes mechanism and prediction. http://www.soi.wide.ad.jp.
[53]  Yao H J, Gerstoft P, Shearer P M, et al. 2011. Compressive sensing of the Tohoku-Oki Mw9.0 earthquake: frequency-dependent rupture modes. Geophys. Res. Lett., 38(20): L20310, doi: 10.1029/2011GL049223.
[54]  Zhang Y, Wang R J, Zschau J, et al. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms. J. Geophys. Res., 119(7): 5633-5650, doi: 10.1002/2013JB010469.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413