全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

毛乌素沙地风沙沉积物磁学特征及其古环境意义

DOI: 10.6038/cjg20151022, PP. 3706-3718

Keywords: X0和Xpedo,降水量,粉尘通量,环境磁学,毛乌素沙地

Full-Text   Cite this paper   Add to My Lib

Abstract:

在沙漠沉积环境中,成土作用对磁化率的贡献较小,往往被原生磁信号掩盖,因此分离两种磁组分对气候和粉尘代用指标的提取至关重要.本研究选取位于毛乌素沙地东缘的锦界风沙沉积剖面为研究对象,利用多变量一元线性回归中的"平均值概念"进行磁化率的原生碎屑组分X0和次生成土组分Xpedo的分离,并探讨磁学参数所承载的气候和环境意义.结果显示,磁学比值参数(如Xpedo/X0、Xfd/HIRM、Xfd%和XARM/SIRM)彼此之间存在显著线性或指数/对数相关关系,它们对成土强度指示明确,可以在一定程度上减小或避免磁性矿物背景值差异所产生的误差,与磁化率相比更适宜用于该区的古降水量重建.HIRM主要由碎屑赤铁矿含量控制,HIRM与X0存在明显正相关关系,表明碎屑赤铁矿随原生磁性矿物总体含量的增加(减少)而增加(减少),在粉尘成因磁性矿物中所占比例大致稳定,从而HIRM可以指示源区粉尘通量的变化.锦界剖面的原生和次生磁性矿物浓度均明显低于黄土高原黄土,不同地层X0和Xpedo在磁化率中所占的比例存在较大差异,因此磁化率的环境意义比较复杂,在使用其恢复古气候古环境时需慎重.

References

[1]  Liu Z F, Liu Q S, Torrent J, et al. 2013. Testing the magnetic proxy FD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Global Planet. Change, 110: 368-378.
[2]  Lü B, Liu X M, Chen Q, et al. 2012. Effects of CBD treatment on magnetic minerals of natural samples. Chinese J. Geophys. (in Chinese), 55(9): 3077-3087, doi: 10.6038/j.issn.0001-5733.2012.09.025.
[3]  Lu H Y, Yi S W, Liu Z Y, et al. 2013. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing. Geology, 41(9): 1023-1026.
[4]  Maher B A, Karloukovski V V, Mutch T J. 2004. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts. Earth Planet. Sci. Lett., 226(3-4): 491-505.
[5]  Muxworthy A R, Williams W, Virdee D. 2003. Effect of magnetostatic interactions on the hysteresis parameters of single-domain and pseudo-single-domain grains. J. Geophys. Res., 108(B11): 2517, doi: 10.1029/2003JB002588.
[6]  Nie J S, Song Y G, King J W, et al. 2010. HIRM variations in the Chinese red-clay sequence: Insights into pedogenesis in the dust source area. J. Asian Earth Sci., 38(3-4): 96-104.
[7]  Nie J S, Song Y G, King J W, et al. 2013. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~4.5-2.6 Ma. Quat. Res., 79(3): 465-470.
[8]  Nie J S, Stevens T, Song Y G, et al. 2014. Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Sci. Rep., 4: 5457, doi: 10.1038/srep05474.
[9]  Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28(16-19): 659-667.
[10]  Roberts A P, Rohling E J, Grant K M, et al. 2011. Atmospheric dust variability from Arabia and China over the last 500, 000 years. Quat. Sci. Rev., 30(25-26): 3537-3541.
[11]  Song Y, Hao Q Z, Ge J Y, et al. 2012. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau. Quat. Sci. (in Chinese), 32(4): 679-689.
[12]  Stevens T, Carter A, Watson T P, et al. 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quat. Sci. Rev., 78: 355-368.
[13]  Sun J M. 2000. Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert, China. Quat. Res., 53(1): 78-88.
[14]  Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett., 203(3-4): 845-859.
[15]  Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen & Unwin, 1-227.
[16]  Torrent J, Barrón V, Liu Q S. 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys. Res. Lett., 33(2): L02401, doi: 10.1029/2005GL024818.
[17]  Verosub K L, Fine P, Singer M J, et al. 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21(11): 1011-1014.
[18]  Wang T, et al. 2011. Deserts and Aeolian Desertification in China. Beijing: Science Press, 476-492.
[19]  Worm H U. 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133(1): 201-206.
[20]  Wu S Y. 2013. Climatic characteristic and variation analyses of Shenmu County over the past 55 years. J. Shaanxi Meteor. (in Chinese), (2): 20-23.
[21]  Xia D S, Jia J, Wei H T, et al. 2012. Magnetic properties of surface soils in the Chinese Loess Plateau and the adjacent Gobi areas, and their implication for climatic studies. J. Arid Environ., 78: 73-79.
[22]  Xia D S, Jia J, Li G H, et al. 2014. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits. Quat. Res., 81(3): 500-507.
[23]  Xu Z W, Lu H Y, Yi S W, et al. 2013. Spatial variations of the Mu Us dune field (north central China) during the Last Glacial Maximum and Holocene Optimum. Quat. Sci. (in Chinese), 33(2): 218-227.
[24]  Zhao S, Xia D S, Jin H L, et al. 2013. Magnetic characteristics of aeolian sand sediments in Horqin sandy land, Northeastern China, and its paleoenvironmental significance: A preliminary exploration. J. Desert Res. (in Chinese), 33(2): 334-342.
[25]  Zhou W J, Chen M B, Xian F, et al. 2007. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in geosciences. Sci. China Ser. D: Earth Sci., 50(12): 1828-1834.
[26]  Li P Y, Liu X M, Guo X L, et al. 2013. The magnetic susceptibility properties of top soil''s in Gobi-Loess Plateau, Northwest China. Quat. Sci. (in Chinese), 33(2): 360-367.
[27]  Liu B, Jin H L, Sun L Y, et al. 2014. Holocene moisture change revealed by the Rb/Sr ratio of aeolian deposits in the southeastern Mu Us Desert, China. Aeolian Res., 13: 109-119.
[28]  Liu Q S, Banerjee S K, Jackson M J, et al. 2003. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. J. Geophys. Res., 108(B9): 2437, doi: 10.1029/2002JB002264.
[29]  Liu Q S, Banerjee S K, Jackson M J, et al. 2004a. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. J. Geophys. Res., 109: B03101, doi: 10.1029/2003JB002747.
[30]  Liu Q S, Jackson M J, Yu Y, et al. 2004b. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys. Res. Lett., 31: L22603, doi: 10.1029/2004GL021090.
[31]  Liu Q S, Deng C L, Yu Y, et al. 2005a. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161(1): 102-112.
[32]  Liu Q S, Torrent J, Maher B A, et al. 2005b. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res., 110: B11102, doi: 10.1029/2005JB003726.
[33]  Liu Q S, Deng C L, Torrent J, et al. 2007a. Review of recent developments in mineral magnetism of the Chinese loess. Quat. Sci. Rev., 26(3-4): 368-385.
[34]  Liu Q S, Roberts A P, Torrent J, et al. 2007b. What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophy. Geosy., 8(9): Q09011, doi: 10.1029/2007GC001717.
[35]  Liu Q S, Barrón V, Torrent J, et al. 2008. Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J. Geophys. Res., 113: B01103, doi: 10.1029/2007JB005207.
[36]  Liu Q S, Roberts A P, Larrasoa?a J C, et al. 2012. Environmental magnetism: Principles and applications. Rev. Geophys., 50(4): RG4002, doi: 10.1029/2012RG000393.
[37]  Liu X M, Bloemendal J, Rolph T. 1994. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comments and reply. Geology, 22(9): 857-860.
[38]  An Z S, Kukla G J, Porter S C, et al. 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000 years. Quat. Res., 36(1): 29-36.
[39]  Balsam W, Ji J F, Chen J. 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth Planet. Sci. Lett., 223(3-4): 335-348.
[40]  Barrón V, Torrent J. 2002. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim. Cosmochim. Acta, 66(15): 2801-2806.
[41]  Beer J, Shen C D, Heller F, et al. 1993. 10Be and magnetic susceptibility in Chinese loess. Geophys. Res. Lett., 20(1): 57-60.
[42]  Carvallo C, Muxworthy A R, Dunlop D J. 2006. First-order reversal curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements. Phys. Earth Planet. Inter., 154(3-4): 308-322.
[43]  Dearing J A, Bird P M, Dann R J L, et al. 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int., 130(3): 727-736.
[44]  France D E, Oldfield F. 2000. Identifying goethite and hematite from rock magnetic measurements of soils and sediments. J. Geophys. Res., 105(B2): 2781-2795.
[45]  Geiss C E, Egli R, Zanner C W. 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J.Geophys.Res.,113: B11102, doi: 10.1029/2008JB005669.
[46]  Han J M, Lü H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction. Stud. Geophys. Geod., 40(3): 262-275.
[47]  Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth Planet. Sci. Lett., 114(2-3): 385-390.
[48]  Heslop D, Dillon M. 2007. Unmixing magnetic remanence curves without a priori knowledge. Geophys. J. Int., 170(2): 556-566.
[49]  Hu P X, Liu Q S, Torrent J, et al. 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett., 369-370: 271-283.
[50]  Ji J F, Chen J, Balsam W, et al. 2004. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response of the East Asian Monsoon to the tropical Pacific. Geophys. Res. Lett., 31(3): L03207, doi: 10.1029/2003GL018975.
[51]  King J, Banerjee S K, Marvin J, et al. 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett., 59(2): 404-419.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413