全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用树轮资料集成重建的过去2000年北半球年平均温度变化

DOI: 10.11928/j.issn.1001-7410.2015.05.01, PP. 1051-1063

Keywords: 北半球,过去2000年,树木年轮,最优信号提取法,大西洋多年代际涛动

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解过去2000年北半球温度变化特征,本文基于16条长度超过2000年的树木年轮年表,利用最优信号提取法重建了过去2000年北半球年平均温度序列。结果显示,过去2000年存在1个极端低温年和4个极端高温年、50个低温年和53个高温年,以及2个冷期和3个暖期。其中,第一个冷期大约在500~550A.D.,这期间出现了8个低温年,第二个冷期是小冰期(1450~1850A.D.),出现了38个低温年和1个极端低温年。3个暖期除发生了17个高温年的中世纪暖期(900~1250A.D.)外,1000A.D.前还存在一个大约是在400~500A.D.的暖期,该时期发生了1个极端高温年和11个高温年。第三个暖期是受人类影响显著的20世纪暖期,该时期未出现极端低温年和低温年,而出现了2个极端高温年和21个高温年,这意味着在全球持续增温的情景下,历史上曾发生过的低温年和极端低温年再次出现的概率很小。对重建温度变化进行归因分析,发现大西洋多年代际涛动(AtlanticMulti-decadalOscillation,简称AMO)、太阳活动和火山活动均对北半球的温度变化有贡献。年平均AMO指数可以解释36%的年代际以上尺度的温度变率,而太阳活动的贡献仅限于与北半球的温度序列具有类似周期信号,其相关性并未通过显著性检验,这表明AMO可能是北半球过去2000年年平均温度变化的主要驱动因子。但由于AMO指数重建时包括了与本文资料的地理位置相同的资料,那么资料本身的相似性可能会影响AMO和北半球温度的关系,未来需要利用海洋沉积等其他类型的地质记录重建AMO指数,以进一步对比检验AMO的贡献。重建结果与全球34个强火山事件对比发现,火山爆发后的第一年北半球降温最为明显,这种降温效应在第四年完全消失,说明火山爆发对北半球年平均温度的影响主要体现在年际尺度上,这与已有研究结果一致。

References

[1]  23 Cook E R, Meko D M, Stahle D W et al. Drought reconstructions for the continental United States. Journal of Climate, 1999, 12 (4):1145~1162
[2]  24 Mann M E, Zhang Z H, Hughes M K et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (36):13252~13257
[3]  25 Tingley M P, Huybers P. A Bayesian Algorithm for reconstructing climate anomalies in space and time. Part Ⅰ:Development and applications to paleoclimate reconstruction problems. Journal of Climate, 2010, 23 (10):2759~2781
[4]  26 Christiansen B, Schmith T, Thejll P. A surrogate ensemble study of climate reconstruction methods:Stochasticity and robustness. Journal of Climate, 2009, 22 (4):951~976
[5]  27 D''Arrigo R, Wilson R, Liepert B et al. On the ''Divergence Problem’ in Northern Forests:A review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60 (3~4):289~305
[6]  28 Wilson R, D''Arrigo R, Buckley B et al. A matter of divergence:Tracking recent warming at hemispheric scales using tree ring data. Journal of Geophysical Research:Atmospheres, 2007, 112 (D17):doi:10.1029/2006jd008318
[7]  29 Shi F, Li J, Wilson R J S. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Scientific Reports, 2014, 4 (6739):doi:10.1038/srep06739
[8]  30 Crowley T J. Causes of climate change over the past 1000 years. Science, 2000, 289 (5477):270~277
[9]  31 Ammann C M, Joos F, Schimel D S et al. Solar influence on climate during the past millennium:Results from transient simulations with the NCAR Climate System Model. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (10):3713~3718
[10]  32 Schurer A P, Tett S F B, Hegerl G C. Small influence of solar variability on climate over the past millennium. Nature Geoscience, 2014, 7 (2):104~108
[11]  33 Tung K K, Zhou J. Using data to attribute episodes of warming and cooling in instrumental records. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (6):2058~2063
[12]  34 Li J, Sun C, Jin F F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophysical Research Letters, 2013, 40 (20):5497~5502
[13]  35 Dai A, Fyfe J C, Xie S P et al. Decadal modulation of global surface temperature by internal climate variability. Nature Climate Change, 2015, 5 (6):555~559
[14]  36 Steinman B A, Mann M E, Miller S K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 2015, 347 (6225):988~991
[15]  37 Jones P D, Lister D H, Osborn T J et al. Hemispheric and large-scale land-surface air temperature variations:An extensive revision and an update to 2010. Journal Geophysical Research, 2012, 117 (D5):doi:10.1029/2011jd017139
[16]  38 Fritts H. Tree Rings and Climate. London:Academic Press, 1976. 316
[17]  39 Cook E R, Anchukaitis K J, Buckley B M et al. Asian monsoon failure and megadrought during the last millennium. Science, 2010, 328 (5977):486~489
[18]  40 Cook E R, Krusic P J, Anchukaitis K J et al. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Climate Dynamics, 2013, 41 (11~12):2957~2972
[19]  41 Helama S, Sepp? H, Bjune A E et al. Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5ka in subarctic Fennoscandia. Journal of Paleolimnology, 2012, 48 (1):275~286
[20]  42 Helama S, Lindholm M, Timonen M et al. The supra-long Scots pine tree-ring record for Finnish Lapland:Part 2, Interannual to centennial variability in summer temperatures for 7500 years. The Holocene, 2002, 12 (6):681~687
[21]  43 Büntgen U, Tegel W, Nicolussi K et al.2500 years of European climate variability and human susceptibility. Science, 2011, 331 (6017):578~582
[22]  44 Esper J, Duethorn E, Krusic P J et al. Northern European summer temperature variations over the Common Era from integrated tree-ring density records. Journal of Quaternary Science, 2014, 29 (5):487~494
[23]  45 Briffa K R, Melvin T M, Osborn T J et al. Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia. Quaternary Science Reviews, 2013, 72 (0):83~107
[24]  46 Salzer M, Kipfmueller K. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, USA. Climatic Change, 2005, 70 (3):465~487
[25]  47 Grudd H, Briffa K, Karlen W et al. A 7400-year tree-ring chronology in northern Swedish Lapland:Natural climatic variability expressed on annual to millennial timescales. The Holocene, 2002, 12 (6):657~665
[26]  48 Salzer M, Hughes M, Bunn A et al. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (48):20348~20353
[27]  49 Briffa K R, Shishov V V, Melvin T M et al. Trends in recent temperature and radial tree growth spanning 2000 years across Northwest Eurasia. Philosophical Transactions of the Royal SocietyB: Biological Sciences, 2008, 363 (1501):2269~2282
[28]  50 Linderholm H W, Gunnarson B E. Summer temperature variability in Central Scandinavia during the last 3600 years. Geografiska Annaler:Series A, Physical Geography, 2005, 87 (1):231~241
[29]  51 Hughes M K, Graumlich L J. Multimillennial dendroclimatic studies from the western United States. In:Jones P D, Bradley R S, Jouzel J eds. Climatic Variations and Forcing Mechanisms of the Last 2000 Years. NATO ASI Series, 1996, 41 :109~124
[30]  52 Graybill D A, Idso S B. Detecting the aerial fertilization effect of atmospheric CO2 enrichment in tree-ring chronologies. Global Biogeochemical Cycles, 1993, 7 (1):81~95
[31]  53 Helama S, Fauria M M, Mielik?inen K et al. Sub-Milankovitch solar forcing of past climates:Mid and Late Holocene perspectives. Geological Society of America Bulletin, 2010, doi:10.1130/b30088.1
[32]  54 Ljungqvist F C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geografiska Annaler:Series A, Physical Geography, 2010, 92 (3):339~351
[33]  55 Gray S T, Graumlich L J, Betancourt J L et al. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophysical Research Letters, 2004, 31 (12):L12205
[34]  56 D''Arrigo R, Wilson R. On the Asian expression of the PDO. International Journal Climatololgy, 2006, 26 (12):1607~1617
[35]  57 Shi F, Yang B, Charpentier Ljungqvist F et al. Multi-proxy reconstruction of Arctic summer temperatures over the past 1400 years. Climate Research, 2012, 54 (2):113~128
[36]  58 Hu W, Wu R, Liu Y. Relation of the South China Sea precipitation variability to Tropical Indo-Pacific SST anomalies during spring-to-summer transition. Journal of Climate, 2014, 27 (14):5451~5467
[37]  59 McShane B B, Wyner A J. A statistical analysis of multiple temperature proxies:Are reconstructions of surface temperatures over the last 1000 years reliable?Annals of Applied Statistics, 2011, 5 (1):5~44
[38]  60 Cleveland W S, Devlin S J. Locally weighted regression:An approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83 (403):596~610
[39]  61 Wilks D. Statistical Methods in the Atmospheric Sciences. Amsterdam, the Netherlands:Elsevier, 2006.463
[40]  62 Pyper B J, Peterman R M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55 (9):2127~2140
[41]  63 Li Y, Li J P, Feng J. A teleconnection between the reduction of rainfall in southwest Western Australia and North China. Journal of Climate, 2012, 25 (24):8444~8461
[42]  64 Adams J B, Mann M E, Ammann C M. Proxy evidence for an El Ni?o -like response to volcanic forcing. Nature, 2003, 426 (6964):274~278
[43]  65 Blarquez O, Carcaillet C. Fire, fuel composition and resilience threshold in subalpine ecosystem. PloS One, 2010, 5 (8):doi:10.1371/journal.pone.0012480
[44]  66 PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nature Geoscience, 2013, 6 (5):339~346
[45]  67 Li J, Wang J X. A new North Atlantic Oscillation index and its variability. Advance Atmospheric Sciences, 2003, 20 (5):661~676
[46]  68 Sun C, Li J, Jin F F. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dynamics, 2015, doi:10.1007/s00382-014-2459-z
[47]  69 Steinhilber F, Abreu J A, Beer J et al.9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (16):5967~5971
[48]  70 Esper J, Schneider L, Krusic P et al. European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology, 2013, 75 (7):1~14
[49]  71 Christiansen B, Ljungqvist F C. Reconstruction of the extratropical NH mean temperature over the last millennium with a method that preserves low-frequency variability. Journal of Climate, 2011, 24 (23):6013~6034
[50]  72 Zhang L, Zhou T. Drought over East Asia:A Review. Journal of Climate, 2015, 28 (8):3375~3399
[51]  73 Xu D, Lu H, Chu G et al.500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. Scientific Reports, 2014, 4 (3611):doi:10.1038/srep03611
[52]  74 Briffa K, Jones P, Schweingruber F et al. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the last 600 years. Nature, 1998, 393 (6684):450~455
[53]  75 Man W, Zhou T, Jungclaus J H. Effects of large volcanic eruptions on global summer climate and East Asian monsoon changes during the last millennium:Analysis of MPI-ESM simulations. Journal of Climate, 2014, 27 (19):7394~7409
[54]  76 Melvin T, Briffa K. A signal-free approach to dendroclimatic standardisation. Dendrochronologia, 2008, 26 (2):71~86
[55]  82 李 伟, 陈仕涛, 吴帅男等. 东亚季风 "2.8ka" 事件高分辨率的石笋记录. 第四纪研究, 2014, 34 (6):1256~1263 Li Wei, Chen Shitao, Wu Shuainan et al. A high-resolution East Asian monsoon records around 2.8ka B.P. from Mt. Shennongjia, Central China. Quaternary Sciences, 2014, 34 (6):1256~1263
[56]  83 张振球, 刘殿兵, 汪永进等. 中全新世东亚季风年至10 年际气候变率: 湖北青天洞5.56~4.84ka B.P. 石笋年层厚度与地球化学证据. 第四纪研究, 2014, 34 (6):1246~1255 Zhang Zhenqiu, Liu Dianbing, Wang Yongjin et al. Annual- to decadal-scale variability of Asian monsoon climates during Mid-Holocene:Evidence from proxies of annual bands and geochemical behaviors a speleothem from 5.56ka B.P. to 4.84 B.P. in Qingtian Cave, Central China. Quaternary Sciences, 2014, 34 (6):1246~1255
[57]  84 时兴合, 秦宁生, 刘洪滨等. 青海治多公元1374年以来树轮记录的青藏高原地面加热场强度变化. 第四纪研究, 2013, 33 (1):115~125 Shi Xinghe, Qin Ningsheng, Liu Hongbin et al. Surface heating field intensity change over Tibetan Plateau recorded Qinghai Zhiduo tree rings since 1374A.D. Quaternary Sciences, 2013, 33 (1):115~125
[58]  1 周天军, 满文敏, 张 洁. 过去千年气候变化的数值模拟研究进展. 地球科学进展, 2009, 24 (5):469~476 Zhou Tianjun, Man Wenmin, Zhang Jie. Progress in numerical simulations of the climate over the last millennium. Advances in Earth Science, 2009, 24 (5):469~476
[59]  2 姚檀栋, 杨梅学, 康兴成. 从古里雅冰芯与祁连山树轮记录看过去2000 年气候变化. 第四纪研究, 2001, 21 (6):514~519 Yao Tandong, Yang Meixue, Kang Xingcheng. Comparative study of the climate changes in the past 2000 years by using ice core and tree ring records. Quaternary Sciences, 2001, 21 (6):514~519
[60]  3 Yang X, Yao T, Joswiak D et al. Integration of Tibetan Plateau ice-core temperature records and the influence of atmospheric circulation on isotopic signals in the past century. Quaternary Research, 2014, 81 (3):520~530
[61]  4 谭 明, 侯居峙, 程 海. 定量重建气候历史的石笋年层方法. 第四纪研究, 2002, 22 (3):209~219 Tan Ming, Hou Juzhi, Cheng Hai. Methodology of quantitatively reconstructing paleoclimate from annualy lanminated stalagmites. Quaternary Sciences, 2002, 22 (3):209~219
[62]  5 谭亮成, 蔡演军, 安芷生等. 石笋氧同位素和微量元素记录的陕南地区4200~2000aB.P. 高分辨率季风降雨变化. 第四纪研究, 2014, 34 (6):1238~1245 Tan Liangcheng, Cai Yanjun, An Zhisheng et al. High-resolution monsoon precipitation variations in southern Shaanxi, Central China during 4200~2000a B.P. as revealed by spelepthem δ18O and Sr/Ca records. Quaternary Sciences, 2014, 34 (6):1238~1245
[63]  6 张伟宏, 汪永进, 吴江滢等. 南京葫芦洞石笋微量元素记录的末次冰消期气候变化. 第四纪研究, 2014, 34 (6):1227~1237 Zhang Weihong, Wang Yongjin, Wu Jiangying et al. Last deglacial climate variations inferred from trace elements in a stalagmite from Hulu Cave, Nanjing. Quaternary Sciences, 2014, 34 (6):1227~1237
[64]  7 陈 琼, 刘淑华, 米小建等. 川东北石笋记录的 GIS 4~5 夏季风气候变化及与高纬气候的联系. 第四纪研究, 2014, 34 (6):1264~1269 Chen Qiong, Liu Shuhua, Mi Xiaojian et al. Spelepthem-derived Asian summer monsoon variations during Greenland Interstadials 4 to 5 in NE Sichuan, Central China and teleconnections with high latitude climates. Quaternary Sciences, 2014, 34 (6):1264~1269
[65]  8 邵雪梅, 王树芝, 徐 岩等. 柴达木盆地东北部3500 年树轮定年年表的初步建立. 第四纪研究, 2007, 27 (4):477~485 Shao Xuemei, Wang Shuzhi, Xu Yan et al. A 3500-year master tree-ring dating chronology from the northeastern past of the Qaidam Basin. Quaternary Sciences, 2007, 27 (4):477~485
[66]  9 刘 禹, 蔡秋芳, 宋慧明. 关于青藏高原2485 年温度的季节和空间代表性问题. 第四纪研究, 2013, 33 (1):108~114 Liu Yu, Cai Qiufang, Song Huiming. Seasonal and spatial representativeness of the tree-ring based 2485-year annual mean temperature reconstruction in the northeastern Tibetan Plateau. Quaternary Sciences, 2013, 33 (1):108~114
[67]  10 韦刚健, 余克服, 李献华等. 南海北部珊瑚 Sr/Ca 和 Mg/Ca 温度计及高分辨率 SST 记录重建尝试. 第四纪研究, 2004, 24 (3):325~331 Wei Gangjian, Yu Kefu, Li Xianhua et al. Coralline Sr/Ca and Mg/Ca thermometer for the northern South China Sea:Calibration and primary application on high-resolution SST reconstructing. Quaternary Sciences, 2004, 24 (3):325~331
[68]  11 陈天然, 余克服. 南海相对高纬度珊瑚对海洋环境变化的响应和高分辨率记录. 第四纪研究, 2014, 34 (6):1288~1295 Chen Tianran, Yu Kefu. Responses and high-resolution records for marine environment changes in the relatively high-latitude corals from the South China Sea. Quaternary Sciences, 2004, 34 (6):1288~1295
[69]  12 葛全胜, 郑景云, 方修琦等. 过去2000 年中国东部冬半年温度变化. 第四纪研究, 2002, 22 (2):166~173 Ge Quansheng, Zheng Jingyun, Fang Xiuqi et al. Temperature changes of winter-half-year in Eastern China during the past 2000 years. Quaternary Sciences, 2002, 22 (2):166~173
[70]  13 张德二, 梁有叶. 历史极端寒冬事件研究——1892/93年中国的寒冬. 第四纪研究, 2014, 34 (6):1176~1185 Zhang De''er, Liang Youye. A study of the severest winter of 1892/93 over China as an extreme climatic event in history. Quaternary Sciences, 2014, 34 (6):1176~1185
[71]  14 方修琦, 苏 筠, 尹 君等. 历史气候变化影响研究中的社会经济等级序列重建方法探讨. 第四纪研究, 2014, 34 (6):1204~1214 Fang Xiuqi, Su Yun, Yin Jun et al. Methodology for quantifying social and economic series on the base of semantic differential to serve the research on impacts of climate change. Quaternary Sciences, 2014, 34 (6):1204~1214
[72]  15 Hao Z X, Zheng J Y, Ge Q S et al. Winter temperature variations over the middle and lower reaches of the Yangtze River since 1736 AD. Climate of the Past, 2012, 8 (3):1023~1030
[73]  16 Christiansen B, Ljungqvist F C. The extra-tropical Northern Hemisphere temperature in the last two millennia:Reconstructions of low-frequency variability. Climate of the Past, 2012, 8 (2):765~786
[74]  17 Moberg A, Sonechkin D M, Holmgren K et al. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature, 2005, 433 (7026):613~617
[75]  18 Mann M E, Zhang Z H, Rutherford S et al. Global signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science, 2009, 326 (5957):1256~1260
[76]  19 Masson-Delmotte V, Schulz M, Abe-Ouchi A et al. Information from paleoclimate archives. In:Stocker T F, Qin D, Plattner G K et al.eds. Climate Change 2013:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York:Cambridge University Press, 2013. 383~464
[77]  20 Yang B, Qin C, Wang J L et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (8):2903~2908
[78]  21 Shi F, Yang B, Mairesse A et al. Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Climate Research, 2013, 56 (3):231~244
[79]  22 Von Storch H, Zorita E, Jones J et al. Reconstructing past climate from noisy data. Science, 2004, 306 (5696):679~682
[80]  77 Yang B, Sonechkin D, Datsenko N et al. Eigen analysis of tree-ring records:Part 3, Taking heteroscedasticity and sampling effects into consideration. Theoretical and Applied Climatology, 2012, 107 (3~4):519~530
[81]  78 Fang K, Wilmking M, Davi N et al. An ensemble weighting approach for dendroclimatology:Drought reconstructions for the northeastern Tibetan Plateau. PloS One, 2014, 9 (1):e86689
[82]  79 徐柏青, 姚檀栋, Chappellaz J. 过去2000 年大气甲烷含量与气候变化的冰芯记录. 第四纪研究, 2006, 26 (2):173~184 Xu Boqing, Yao Tandong, Chappellaz J. Atmospheric methane concentration and climate change recorded in ice cores over the past 2000 years. Quaternary Sciences, 2006, 26 (2):173~184
[83]  80 赵华标, 徐柏青, 王宁练. 青藏高原冰芯氧同位素记录的温度代表性研究. 第四纪研究, 2014, 34 (6):1215~1226 Zhao Huabiao, Xu Boqing, Wang Ninglian. Study on the water stable isotopes in Tibetan Plateau ice cores as a proxy of temperature. Quaternary Sciences, 2014, 34 (6):1215~1226
[84]  81 谭 明, 段武辉. 北京石花洞石笋季节尺度地球化学旋回特征——以年层标定的纳米离子探针分析. 第四纪研究, 2014, 34 (6):1338~1339 Tan Ming, Duan Wuhui. Seasonal scale geochemical cycles in a stalagmite from Beijing Shihua Cave——Nano SIMS analysis for annual layers. Quaternary Sciences, 2014, 34 (6):1338~1339
[85]  85 任军莉, 刘 禹, 宋慧明等. 甘肃临夏地区过去195 年最高温度历史重建——基于紫果云杉树轮宽度资料. 第四纪研究, 2014, 34 (6):1270~1279 Ren Junli, Liu Yu, Song Huiming et al. The historical reconstruction of the maximum temperature over the past 195 years, Linxia region, Gansu provious——Based on the data from Picea purpurea Mast. Quaternary Sciences, 2014, 34 (6):1270~1279
[86]  86 张会领, 余克服, 施 祺等. 珊瑚生长率重建西沙海域中晚全新世海温变化. 第四纪研究, 2014, 34 (6):1296~1305 Zhang Huiling, Yu Kefu, Shi Qi et al. Sea surface temperature variations during the Mid-Late Holocene reconstructed by Porites coral growth rates in the Xisha Islands. Quaternary Sciences, 2014, 34 (6):1296~1305
[87]  87 郑景云, 葛全胜, 郝志新等. 历史文献中的气象记录与气候变化定量重建方法. 第四纪研究, 2014, 34 (6):1186~1196 Zheng Jingyun, Ge Quansheng, Hao Zhixin et al. Paleoclimatology proxy recorded in hostorical documents and method for reconstruction on climate change. Quaternary Sciences, 2014, 34 (6):1186~1196
[88]  88 满志敏, 杨煜达. 中世纪温暖期升温影响中国东部地区自然环境的文献证据. 第四纪研究, 2014, 34 (6):1197~1203 Man Zhimin, Yang Yuda. The Medieval warming impacts on the natural environment in Eastern China as inferred from historical documents. Quaternary Sciences, 2014, 34 (6):1197~1203

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133