全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

树轮生理模型研究进展——以V-S,TREE-RING和MAIDENiso模型为例

DOI: 10.11928/j.issn.1001-7410.2015.05.22, PP. 1261-1270

Keywords: 树轮序列,机理研究,模型应用,气候因子,CO2浓度变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

树轮生理模型能够揭示树木生长与外界环境关系的内在机制。模型允许不同时期有不同的生长限制因子,避免了树木生长对气候响应的敏感性随时间变化等问题。应用模型的一个显著优点即是能够分析树木生长与气候因子的非线性关系,定量区分不同环境因子对树木生长的贡献权重,为树轮气候学和树轮生态学研究提供生理基础。本文以V-S模型、TREE-RING模型和MAIDENiso模型为例,详细评述了模型的形成背景、运行机制、应用和各自的优缺点。比较而言,V-S模型的物理过程简单,对实测数据的要求在一般的树轮研究样点就可得到满足,应用范围广泛,目前已被成功用于分析不同气候区树木生长与外界环境因子关系的研究中。结合在青藏高原东北部的实测数据,分析发现祁连圆柏生长主要受当地水分条件的限制,验证了此前基于统计结果的可靠性。TREE-RING和MAIDENiso模型的物理过程更为完善,能够分析工业革命以来大气CO2浓度增加对树木生长的影响,但对实测数据要求较高,如对日降水中δ18O值的需求,应用范围受限。整体而言,树轮生理模型已取得了长足的发展,不断深化了人们对树木生长与气候因子关系的理解。模型的进一步优化与改进有待于对全球变化背景下树木生理生态交互过程及非气候因子影响的深入研究。

References

[1]  4 Yang B, Qin C, Wang J L et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (8):2903~2908
[2]  5 杨 保. 树轮记录的小冰期以来青藏高原气候变化的时空特征. 第四纪研究, 2012, 32 (1):81~94 Yang Bao. Spatisl and temporal patterns of climate variations over the Tibetan Plateau during the period 1300~2010. Quaternary Sciences, 2012, 32 (1):81~94
[3]  6 王亚军, 马玉贞, 鲁瑞洁等. 树木年轮记录的祁连山东段公元1895年来的气温变化. 第四纪研究, 2009, 29 (5):905~912 Wang Yajun, Ma Yuzhen, Lu Ruijie et al. Reconstruction of mean temperatures of January to August since A.D. 1895 based on tree-ring data in the eastern part of Qilian Mountains. Quaternary Sciences, 2009, 29 (5):905~912
[4]  7 李宗善, 刘国华, 伍 星等. 川西米亚罗地区岷江冷杉林过去223年森林净初级生产力重建. 第四纪研究, 2014, 34 (4):830~847 Li Zongshan, Liu Guohua, Wu Xing et al. Tree ring-based net primary production of Abies faxoniana forest over the past 223 years in Miyaluo of western Sichuan, China. Quaternary Sciences, 2014, 34 (4):830~847
[5]  8 刘昶智, 勾晓华, 方克艳等. 甘肃南部公元1824年以来降水重建. 第四纪研究, 2013, 33 (3):518~525 Liu Changzhi, Gou Xiaohua, Fang Keyan et al. Precipitation reconstruction in southern Gansu Province since A.D. 1824. Quaternary Sciences, 2013, 33 (3):518~525
[6]  9 勾晓华, 杨梅学, 彭剑峰等. 树轮记录的阿尼玛卿山区过去830年夏半年最高温变化. 第四纪研究, 2006, 26 (6):991~998 Gou Xiaohua, Yang Meixue, Peng Jianfeng et al. Maximum temperature reconstruction for Anmaqing Mountains over past 830 years based on tree-ring records. Quaternary Sciences, 2006, 26 (6):991~998
[7]  10 邵雪梅, 王树芝, 岩 徐等. 柴达木盆地东北部3500年树轮定年年表的初步建立. 第四纪研究, 2007, 27 (4):477~485 Shao Xuemei, Wang Shuzhi, Xu Yan et al. A 3500-year master tree-ring dating chronology from the northeastern part of the Qaidam Basin. Quaternary Sciences, 2007, 27 (4):477~485
[8]  11 刘晶晶, 杨 保. 西藏浪卡子地区树轮宽度特征值年表的建立. 第四纪研究, 2014, 34 (6):1280~1287 Liu Jingjing, Yang Bao. Development of a tree-ring-width chronology using the Eigen analysis method in Langkazi regions of Tibet. Quaternary Sciences, 2014, 34 (6):1280~1287
[9]  12 任军莉, 刘 禹, 宋慧明等. 甘肃临夏地区过去195年最高温度历史重建——基于紫果云杉树轮宽度资料. 第四纪研究, 2014, 34 (6):1270~1279 Ren Junli, Liu Yu, Song Huiming et al. The historical reconstruction of the maximum temperature over the past 195 years, Linxia region, Gansu Province——Based on the data from Picea purpureaMast. Quaternary Sciences, 2014, 34 (6):1270~1279
[10]  13 蔡秋芳, 刘 禹. 山西五鹿山油松树轮宽度年表的建立及过去百余年5~6月平均气温变化. 第四纪研究, 2013, 33 (3):511~517 Cai Qiufang, Liu Yu. The development of a tree-ring width chronology and the May~June mean temperature variability in Wulu Mountain, north-Central China. Quaternary Sciences, 2013, 33 (3):511~517
[11]  14 Breitenmoser P, Br?nnimann S, Frank D. Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Climate of the Past, 2014, 10 (2):437~449
[12]  15 Wilmking M, Juday G P, Barber V A et al. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change of Biology, 2004, 10 (10):1724~1736
[13]  16 D''Arrigo R, Wilson R, Liepert B et al. On the ''Divergence Problem’ in Northern Forests:A review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60 (3~4):289~305
[14]  17 Briffa K R, Schweingruber F H, Jones P D et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391 (6668):678~682
[15]  18 Fritts H C. Growth-rings of trees:Their correlation with climate. Science, 1966, 154 (3752):973~979
[16]  19 Wilson B F, Howard R A. A computer model for cambial activity. Forest Science, 1968, 14 (1):77~90
[17]  20 Wilson B F. A diffusion model for tracheid production and enlargement in conifers. Botanical Gazette, 1973, 134 (3):189~196
[18]  21 Howard R, Wilson B. A stochastic model for cambial activity. Botanical Gazette, 1972, 133 (4):410~414
[19]  22 Stevens D W. A computer program for simulating cambial activity and ring growth. Tree-Ring Bulletin, 1975, 35 :49~56
[20]  29 Eglin T, Franois C, Michelot A et al. Linking intra-seasonal variations in climate and tree-ring δ 13 C:A functional modelling approach. Ecological Modelling, 2010, 221 (15):1779~1797
[21]  30 Ogee J, Barbour M M, Wingate L et al. A single-substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose. Plant, Cell and Environment, 2009, 32 (8):1071~1090
[22]  33 Drew D M, Downes G M, Battaglia M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. Journal of Theoretical Biology, 2010, 264 (2):395~406
[23]  34 Battaglia M, Sands P, White D et al. CABALA:A linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management, 2004, 193 (1~2):251~282
[24]  35 Huang J G, Deslauriers A, Rossi S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytologist, 2014, 203 (3):831~841
[25]  36 Berninger F, Hari P, Nikinmaa E et al. Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line. Tree Physiology, 2004, 24 :193~204
[26]  37 Le Roux X, Lacointe A, Escobar-Gutiérrez A et al. Carbon-based models of individual tree growth:A critical appraisal. Annals of Forest Science, 2001, 58 :469~506
[27]  38 Misson L. MAIDEN:A model for analyzing ecosystem processes in dendroecology. Canadian Journal of Forest Research, 2004, 34 (4):874~887
[28]  39 Andreu-Hayles L, Planells O, GutiéRrez E et al. Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change of Biology, 2011, 17 (6):2095~2112
[29]  40 Girardin M P, Bernier P Y, Raulier F et al. Testing for a CO2 fertilization effect on growth of Canadian boreal forests. Journal of Geophysical Research, 2011, 116 (G1):G01012
[30]  41 Keenan T F, Hollinger D Y, Bohrer G et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 2013, 499 (7458):324~327
[31]  42 Levesque M, Siegwolf R, Saurer M et al. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 2014, 203 (1):94~109
[32]  43 Pe?uelas J, Canadell J G, Ogaya R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 2011, 20 (4):597~608
[33]  44 Norby R J, Delucia E H, Gielen B et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (50):18052~18056
[34]  45 Guiot J, Boucher E, Gea-Izquierdo G. Process models and model-data fusion in dendroecology. Frontiers in Ecology and Evolution, 2014, 2 :1~12
[35]  46 Vaganov E A, Hughes M K, Shashkin A V. Growth Dynamics of Conifer Tree Rings:Images of Past and Future Environments. New York:Springer Science & Business Media, 2006. 189~243
[36]  47 Tolwinski-Ward S E, Evans M N, Hughes M K et al. An efficient forward model of the climate controls on interannual variation in tree-ring width. Climate Dynamics, 2011, 36 (11~12):2419~2439
[37]  48 Evans M N, Reichert B K, Kaplan A et al. A forward modeling approach to paleoclimatic interpretation of tree-ring data. Journal of Geophysical Research, 2006, 111 (G3):G03008
[38]  49 Anchukaitis K J, Evans M N, Kaplan A et al. Forward modeling of regional scale tree-ring patterns in the Southeastern United States and the recent influence of summer drought. Geophysical Research Letters, 2006, 33 (4):L04705
[39]  50 Touchan R, Shishov V V, Meko D M et al. Prosess based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences, 2012, 9 (3):965~972
[40]  51 Zhang Yongxiang, Shao Xuemei, Xu Yan et al. Process-based modeling analyses of Sabina przewalskiigrowth response to climate factors around the northeastern Qaidam Basin. Chinese Science Bulletin, 2011, 56 (14):1518~1525
[41]  52 Shi J, Liu Y, Vaganov E A et al. Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north Central China: A case study of Pinus tabulaeformis. Journal of Geophysical Research, 2008, 113 (G1):G01026
[42]  53 史江峰, 刘 禹, Vaganov E 等. 贺兰山油松生长的气候响应机制初步探讨. 第四纪研究, 2005, 25 (2):245~251 Shi Jiangfeng, Liu Yu, Vaganov E et al. A primary discussion on the climate response of Pinus tabulaeformis in the Helan Mountain. Quaternary Sciences, 2005, 25 (2):245~251
[43]  54 史江峰, 刘 禹, 蔡秋芳等. 油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制——以贺兰山地区为例. 生态学报, 2006, 26 (3):697~705 Shi Jiangfeng, Liu Yu, Cai Qiufang et al. A case study of physiological characteristics of statistical correlation between Pinus tabulaeformis tree-ring width and climate factors. Acta Ecologica Sinica, 2006, 26 (3):697~705
[44]  55 Sheppard P R, Tarasov P E, Graumlich L J et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Climate Dynamics, 2004, 23 (7~8):869~881
[45]  56 Vaganov E A, Anchukaitis K J, Evans M N. How well understood are the processes that create dendroclimatic records?A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In:Hughes M K, Swetnam T W, Diaz H F eds. Dendroclimatology, Developments in Paleoenvironmental Research. New York:Springer Science+Business Media, 2011. 37~75
[46]  57 李 雁, 邵雪梅, 国 咖. 柴达木盆地东缘地区青海云杉生长的气候响应机制初步探讨. 高原气象, 2010, 29 (2):349~358 Li Yan, Shao Xuemei, Guo Ka. Primary discussion of the climate mechanism response of Picea crassifolia on east edge of Qaidam Basin. Plateau Meteorology, 2010, 29 (2):349~358
[47]  58 尹 红, 刘洪滨, 郭品文等. 小兴安岭低山区红松生长的气候响应机制. 生态学报, 2009, 29 (12):6333~6341 Yin Hong, Liu Hongbin, Guo Pinwen et al. An analysis on the climate response mechanism of the growth of Pinus koraiensis in the lower mountains of Xiaoxing''anling. Acta Ecologica Sinica, 2009, 29 (12):6333~6341
[48]  59 尹 红. 基于TREE-RING模型的小兴安岭红松树轮生长气候响应研究. 南京: 南京信息工程大学博士毕业论文, 2009. 1~141 Yin Hong. The Study on the Climatic Response of the Growth of Pinus koraiensisin the Xiaoxing''anling Based on the TREE-RING Eco-physiological Model. Nanjing:The Ph.D Thesis of Nanjing University of Information Science and Technology, 2009. 1~141
[49]  60 尹 红, 王 靖, 刘洪滨等. 小兴安岭红松径向生长对未来气候变化的响应. 生态学报, 2011, 31 (24):7343~7350 Yin Hong, Wang Jing, Liu Hongbin et al. A research on the response of the radial growth of Pinus koraiensisto future climate change in the Xiaoxing''anling. Acta Ecologica Sinica, 2011, 31 (24):7343~7350
[50]  61 Handa I T, K?rner C, H?ttenschwiler S. A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology, 2005, 86 (5):1288~1300
[51]  62 van der Sleen P, Groenendijk P, Vlam M et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 2015, 8 (1):24~28
[52]  1 Fritts H C. Tree Rings and Climate. New York:Academic Press, 1976. 1~576
[53]  2 Hughes M K, Swetnam T W, Diaz H F. Dendroclimatology:Progress and Prospect. New York:Springer Science+Business Media B. V., 2011. 1~365
[54]  3 Büntgen U, Trnka M, Krusic P J et al. Tree-ring amplification of the early-19th century summer cooling in central Europe. Journal of Climate, 2015,doi:10.1175/JCLI-D-14-00673.1
[55]  23 Vaganov E A. Methods of Dendrochronology:Applications in the Environmental Sciences. Netherlands:Kluwer Academic Publishers, 1990. 63~75
[56]  24 Shashkin A V, Vaganov E A. Simulation model of climatically determined variability of conifers'' annual increment(on the example of Scots pine in the steppe zone). Russia Journal of Ecology, 1993, 24 :275~280
[57]  25 Fritts H C, Shashkin A, Downes G M et al. Tree-ring Analysis:Biological, Methodological and Environmental Aspects. London: CABI Publishing, 1999. 3~32
[58]  26 Davi H, Dufrêne E, Granier A et al. Modelling carbon and water cycles in a beech forest. Ecological Modelling, 2005, 185 (2~4):387~405
[59]  27 Danis P A, Hatté C, Misson L et al. MAIDENiso:A multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes. Canadian Journal of Forest Research, 2012, 42 (9):1697~1713
[60]  28 Dufrêne E, Davi H, Franois C et al. Modelling carbon and water cycles in a beech forest. Ecological Modelling, 2005, 185 (2~4):407~436
[61]  31 Deckmyn G, Evans S P, Randle T J. Refined pipe theory for mechanistic modeling of wood development. Tree Physiology, 2006, 26 :703~717
[62]  32 Kramer E M. A mathematical model of pattern formation in the vascular cambium of trees. Journal of Theoretical Biology, 2002, 216 (2):147~158
[63]  63 Li G, Harrison S P, Prentice I C. A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland. Biogeosciences Discussions, 2015, 12 (6):4769~4800
[64]  64 Gedalof Z, Berg A A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochemical Cycles, 2010, 24 (3):GB3027
[65]  65 Silva L C R, Anand M, Leithead M D. Recent widespread tree growth decline despite increasing atmospheric CO2. PloS One, 2010, 5 (7):e11543
[66]  66 Silva L C, Horwath W R. Explaining global increases in water use efficiency:Why have we overestimated responses to rising atmospheric CO2 in natural forest ecosystems?PloS One, 2013, 8 (1):e53089
[67]  67 Norby R J, Wullschleger S D, Gunderson C A et al. Tree responses to rising CO2 in field experiments:Implications for the future forest. Plant, Cell and Environment, 1999, 22 (6):683~714
[68]  68 Boucher é, Guiot J, Hatté C et al. An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations. Biogeosciences, 2014, 11 (12):3245~3258
[69]  69 Garreta V, Miller P A, Guiot J et al. A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Climate Dynamics, 2010, 35 (2~3):371~389
[70]  70 Goosse H, Crespin E, de Montety A et al. Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. Journal of Geophysical Research, 2010, 115 (D9):D09108
[71]  71 McCarroll D, Loader N J. Stable isotopes in tree rings. Quaternary Science Reviews, 2004, 23 (7~8):771~801
[72]  72 Rathgeber C, Nicault A, Kaplan J O et al. Using a biogeochemistry model in simulating forests productivity responses to climatic change and CO2 increase:Example of Pinus halepensis in Provence(south-East France). Ecological Modelling, 2003, 166 (3):239~255
[73]  73 Berninger F, Nikinmaa E. Implications of varying pipe model relationships on Scots pine growth in different climates. Functional Ecology, 1997, 11 (2):146~156
[74]  74 Hanninen H. Effects of climatic change on trees from cool and temperate regions:An ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany, 1995, 73 (2):183~199
[75]  75 Bigler C, Bugmann H. Predicting the time of tree death using dendrochronological data. Ecological Applications, 2004, 14 (3):902~914
[76]  76 Hogg E H, Brandt J P, Kochtubajda B. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Canadian Journal of Forest Research, 2002, 32 (5):823~832
[77]  77 Covington W, Fule P, Hart S et al. Modeling ecological restoration effects on ponderosa, pine forest structure. Restoration Ecology, 2001, 9 (4):421~431
[78]  78 Hogg E H, Wein R W. Impacts of drought on forest growth and regeneration following fire in southwestern Yukon, Canada. Canadian Journal of Forest Research, 2005, 35 (9):2141~2150

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133