Cline J S. 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology, 96: 75?89.
[9]
Deditius A P, Utsunomiya S, Ewing R C and Kesler S E. 2009a. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. American Mineralogist, 94: 391?394.
[10]
Deditius A P, Utsunomiya S, Ewing R C, Chryssoulis S L, Venter D, and Kesler S E. 2009b. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology, 37(8): 707?710.
[11]
Deditius A P, Utsunomiya S, Reich M, Kesler S E, Ewing R C, Hough R and Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42: 32?46.
[12]
Deditius A P, Utsunomiya S, Renock D, Ewing R C, Ramana C V, Becker U and Kesler S E. 2008. A proposed new form of arsenian pyrite: Composition, nanostructure and geochemical significance. Geochimica et Cosmochimica Acta, 72: 2919?2933.
[13]
Emsbo P, Hofstra A H, Lauha E A, Griffin G L, Hutchinson R W, John D A and Theodore T G. 2003. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin Trend, Nevada. Economic Geology, 98: 1069?1105.
[14]
Fleet M E, Mumin A H. 1997. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82: 182?193.
[15]
Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39: 864?889.
[16]
Kesler S E, Russel N, Seaward M, Rivera J, McCurdy K, Cumming G L and Sutter J F. 1981. Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic. Economic Geology, 76: 1096?1117.
[17]
Kr?ner A, Compston W, Zhang G W, Guo A L and Todt W. 1988. Age and tectonic setting of late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16: 211?215.
[18]
Liang H Y, Sun W D, Su W C and Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite aiteration. Economic Geology, 104: 587?596.
[19]
Simon G, Huang H, Penner-Hahn J E, Kesler S E and Kao L S. 1999. Oxidation state of gold and arsenic in gold- bearing arsenian pyrite. American mineralogist, 84: 1071?1079.
[20]
Williams-Jones A E and Heinrich C A. 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100: 1287?1312.
Ballard J R, Palin J M and Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petro?l?ogy, 144: 347?364.
[29]
Brimhall G H and Ghiorso M S. 1983. Origin and ore-form?ing consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Economic Geology, 78: 73?90.
[30]
Morey A A, Tomkins A G, Bierlin F P, Wienberg R F and Davidson G J. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Economic Geology, 103: 599?614.
[31]
Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915?918.
[32]
Palenik C S, Utsunomiya S, Reich M, Kesler S E and Ewing R C. 2004. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89: 1359?1366.
[33]
Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32(3): 217?218.
[34]
Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barraand F and Mittermayr F. 2012. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42?62.
[35]
Reich M, Kesler S E, Utsunomiya S, Palenik C S, Chryssoulis S L and Ewing R C. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69: 2781?2796.
[36]
Savage K S, Tingle T N, O’Day P A, Waychunas G A and Bird D K. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California. Applied Geochemistry, 15: 1219?1244.
[37]
Schmid-Beurmann P and Bente K. 1995. Stability properties of Cu2S-FeS2 solid solution series pyrite type. Mineralogy and Petrology, 53: 333?341.
[38]
Shimazaki H and Clark L A. 1970. Synthetic FeS2-CuFe2 solid solution and fukuchilite-like minerals. Canadian Mineralogist, 10: 648?664.
[39]
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105: 3?41.
[40]
Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431: 975?978.
[41]
Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R, Wei Q R and Fan W M. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263?275.
[42]
Turner S J. 1997. The Yanacocha epithermal gold deposits, northern Peru: High-sulfidation min-eralization in the flow dome setting. Golden: Colorado School of Mines Ph. D. thesis: 341.
[43]
Zhao T P, Zhai M G, Xia B, Li H M, Zhang Y X and Wan Y S. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495?2502.