全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆独山子泥火山沉积物及孔隙水的地球化学特征与流体来源

, PP. 325-333

Keywords: 泥火山,孔隙水,沉积物,地球化学,改造作用,流体来源,新疆

Full-Text   Cite this paper   Add to My Lib

Abstract:

对陆地泥火山流体来源及其向地表渗漏过程中的改造作用开展研究,有利于加深理解泥火山释放甲烷的碳排放过程。新疆准噶尔盆地南缘独山子泥火山柱状沉积物和地表沉积物的矿物和元素组成,以及沉积物孔隙水离子组成等的分析结果显示,泥火山沉积物孔隙水Na+和Cl?间具有很好的正相关性,具有比海水高的Na+/Cl?和Li+/Cl?值、低的K+/Cl?和Mg2+/Cl?。泥火山沉积物与围岩相比,富集伊利石、绿泥石和方解石,缺少蒙脱石,富集Ca、亏损Si,这些变化主要与黏土矿物的脱水转变有关。表明泥火山流体主要来源于深部低盐度沉积物孔隙水,但经历了地表的蒸发作用,并混合了大气降水。

References

[1]  戴金星, 吴小奇, 倪云燕, 汪泽成, 赵长毅, 王兆云, 刘桂侠. 2012. 准噶尔盆地南缘泥火山天然气的地球化学特征. 中国科学(D辑), 42 (2): 178?190.
[2]  高小其, 王海涛, 高国英, 高歌, 王中道, 陆明勇, 桑丽荣, 杨晓芳, 郭卫英, 许秋龙. 2008. 霍尔果斯泥火山活动与新疆地区中强以上地震活动关系的初步研究. 地震地质, 30(2): 464?472.
[3]  高苑, 王永莉, 郑国东, 孟培, 吴应琴, 杨辉, 张虹, 王有孝. 2012. 新疆准噶尔盆地独山子泥火山天然气地球化学特征. 地球学报, 33(6): 989?994.
[4]  李锰, 王道, 李茂伟, 戴晓敏. 1996. 新疆独山子泥火山喷发特征的研究. 内陆地震, 10(4): 359?362.
[5]  李梦, 刘冬冬, 郭召杰. 2013. 准噶尔盆地南缘泥火山活动及其伴生油苗的地球化学特征和意义. 高校地质学报, 19(3): 484?490.
[6]  Liu C C, Jean J S, Nath B, Lee M K, Hor L I, Lin K H and Maity J P. 2009. Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water-sediment interaction and groundwater arsenic enrichment. Applied Geochemistry, 24(9): 1793?1802.
[7]  Milkov A V and Etiope G. 2005. Global methane emission through mud volcanoes and its past and present impact on earth climate. International Journal of Earth Sciences, 94(3): 493?494.
[8]  Nakada R, Takahashi Y, Tsunogai U, Zheng G D, Shimizu H and Hattori K H. 2011. A geochemical study on mud volcanoes in the Junggar Basin, China. Applied Geochemistry, 26(7): 1065?1076.
[9]  Nath B, Jean J S, Lee M K, Yang H J and Liu C C. 2008. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1?4): 85?96.
[10]  王道. 2000. 新疆北天山地区泥火山与地震. 内陆地震, 12(4): 350?353.
[11]  王道, 李茂玮, 李锰, 戴晓敏. 1997. 新疆独山子泥火山喷发的初步研究. 地震地质, 19: 14?16.
[12]  Aquilina L, Dia A N, Boulegue J, Bourgois J and Fouillac A M. 1997. Massive barite deposits in the convergent margin off Peru: Implications for fluid circulation within subduction zones. Geochimica et Cosmochimica Acta, 61(6): 1233?1245.
[13]  Brown K M, Saffer D M and Bekins B A. 2001. Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth and Planetary Science Letters, 194(1?2): 97?109.
[14]  Chan L H, Gieskes J M, You C F and Edmond J M. 1994. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas basin, Gulf of California. Geochimica et Cosmochimica Acta, 58(20): 4443?4454.
[15]  Chang Y H, Cheng T W, Lai W J, Tsai W Y, Sun C H, Lin L H and Wang P L. 2012. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 14(4): 895?908.
[16]  Chao H C, You C F, Wang B S, Chung C H and Huang K F. 2011. Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones. Earth and Planetary Science Letters, 305(1?2): 32?44.
[17]  Cheng T W, Chang Y H, Tang S L, Tseng C H, Chiang P W, Chang K T, Sun C H, Chen Y G, Kuo H C, Wang C H, Chu P H, Song S R, Wang P L and Lin L H. 2012. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. The ISME Journal, 6(12): 2280?2290.
[18]  D?hlmann A and de Lange G J. 2003. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: A stable isotope study from ODP Leg 160. Earth and Planetary Science Letters, 212(3?4): 377?391.
[19]  Dia A N, Castrec-Rouelle M, Boulegue J and Comeau P. 1999. Trinidad mud volcanoes: Where do the expelled fluids come from? Geochimica et Cosmochimica Acta, 63(7?8): 1023?1038.
[20]  Dimitrov L I. 2002. Mud volcanoes―the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1?4): 49?76.
[21]  Etiope G, Feyzullayev A, Milkov A V, Waseda A, Mizobe K and Sun C H. 2009. Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes. Marine and Petroleum Geology, 26(9): 1692?1703.
[22]  Etiope G, Nakada R, Tanaka K and Yoshida N. 2011. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): Origin, post-genetic alterations and CH4-CO2 fluxes. Applied Geochemistry, 26(3): 348?359.
[23]  Fu B H, Zheng G D, Ninomiya, Y, Wang C Y and Sun G. 2007. Mapping hydrocarbon-induced mineralogical alterations in the northern Tian Shan using ASTER multispectral data. Terra Nova, 19(4): 225?231.
[24]  Hensen C, Nuzzo M, Hornibrook E, Pinheiro L M, Bock B, Magalhaes V H and Brückmanna W. 2007. Sources of mud volcano fluids in the Gulf of Cadiz―indications for hydrothermal imprint. Geochimica et Cosmochimica Acta, 71(5): 1232?1248.
[25]  James R H, Allen D E and Seyfried W E. 2003. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 ℃): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochimica et Cosmochimica Acta, 67(4): 681?691.
[26]  Kastner M, Elderfield H, Jenkins W J, Gieskes J M and Gamo T. 1993. Geochemical and isotopic evidence for fluid in the western Nankai subduction zone, Japan // Hill I A, Taira A and Firth J V. Proceeding of the Ocean Drilling Program Scientific Reports 131. Ocean Drilling Program, College Station, TX: 397?413.
[27]  Kastner M, Elderfield H and Martin J B. 1991. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philosophical Transactions of the Royal Society A, 335, 243?259.
[28]  Kopf A J. 2002. Significance of mud volcanism. Reviews of Geophysics, 40(2): 1?52.
[29]  Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W and Yang Y H. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50(21): 2481?2486.
[30]  Martin J B, Kastner M, Henry P, LePichon X and Lallement S. 1996. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. Journal of Geophysical Research- Solid Earth, 101(B9): 20325?20345.
[31]  Mazzini A. 2009. Mud volcanism: Processes and implications. Marine and Petroleum Geology, 26(9): 1677?1680.
[32]  Mazzini A, Svensen H, Planke S, Guliyev I, Akhmanov G G, Fallik T and Banks D. 2009. When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26(9): 1704?1715.
[33]  Milkov A V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1?2): 29?42.
[34]  Milkov A V. 2005. Global distribution of mud volcanoes and their significance in petroleum exploration as a source of methane in the atmosphere and hydrosphere and as a geohazard // Martinelli G and Panahi B. Mud Volcanoes, Geodynamics and Seismicity: 29?34.
[35]  Neurauter T W and Bryant W R. 1990. Seismic expression of sedimentary volcanism on the continental slope, northern Gulf of Mexico. Geo-Marine Letters, 10(4): 225?231.
[36]  Planke S, Svensen H, Hovland M, Banks D A and Jamtveit B. 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Marine Letters, 23(3?4): 258?268.
[37]  Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N and Bauer S E. 2009. Improved Attribution of Climate Forcing to Emissions. Science, 326(5953): 716?718.
[38]  Sun C H, Chang S C, Kuo C L, Wu J C, Shao P H and Oung J N. 2010. Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37(2): 105?116.
[39]  Taylor J C. 1991. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6: 2?9.
[40]  Vrolijk P, Fisher A and Gieskes J. 1991. Geochemical and geothermal evidence for fluid migration in the Barbados accretionary prism (ODP Leg 110). Geophysical Research Letters, 18(5): 947?950.
[41]  Wan Z F, Shi Q H, Guo F, Zhong Y and Xia B. 2013. Gases in Southern Junggar Basin mud volcanoes: Chemical composition, stable carbon isotopes, and gas origin. Journal of Natural Gas Science and Engineering, 14: 108?115.
[42]  You C F, Castillo P R, Gieskes J M, Chan L H and Spivack A J. 1996. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1?4): 41?52.
[43]  You C F, Gieskes J M, Lee T, Yui T F and Chen H W. 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5): 695?707.
[44]  Zheng G, Fu B H, Takahashi Y, Kuno A, Matsuo M and Zhang J. 2010a. Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, Northwest China. Journal of Asian Earth Sciences, 39(6): 713?723.
[45]  Zheng G D, Fu B H, Kuno A and Matsuo M. 2010b. Iron speciation in bleached rocks by hydrocarbon leaching in Dushanzi Mud Volcano, NW China. Journal of Physics: Conference Series 217 012048, doi: 10.1088/1742?6596/217/1/012048.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413