全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粤北仁化白垩纪安山玢岩锆石年代学、地球化学和岩石成因研究?

DOI: 10.16539/j.ddgzyckx.2015.03.010, PP. 481-496

Keywords: 粤北仁化地区,安山玢岩,锆石U-Pb年代学,地球化学特征,岩石圈伸展,早白垩世

Full-Text   Cite this paper   Add to My Lib

Abstract:

仁化安山玢岩分布在华南湘桂地洼系南东侧,位于广东韶关丹霞火山盆地中。来自仁化妙禅寺和石背两地的安山玢岩LA-ICP-MS锆石U-Pb测年结果分别为105.0±0.7Ma和104.3±0.8Ma,表明其形成于中生代构造活化期最强烈的早白垩世晚期。妙禅寺和石背安山玢岩均具斑状结构,块状构造。斑晶主要为斜长石和角闪石或辉石,基质组成与斑晶类似。相关图解显示安山玢岩为高钾钙碱性系列岩石,其Mg#为49~61,K2O含量为3.07%~3.81%。微量元素地球化学特征研究表明,这些安山玢岩明显富集轻稀土(LREE)和大离子亲石元素Rb、K、Th和U,亏损高场强元素Nb、Ta和Ti,无Zr、Hf异常。Zr/Y(6.56~9.10)、Th/U(3.72~4.31)、Nb/La(<0.31)和(Th/Nb)N(>10)等微量元素比值表明其源区为地壳物质加入板内玄武质岩浆的结果。结合前人已有的区域研究成果,作者认为仁化安山玢岩母岩浆应是在岩石圈伸展构造背景下由岩石圈地幔部分熔融形成,岩浆在上升或侵位过程中遭受了不同程度的地壳混染,经历一定程度结晶分异作用后最终形成安山质岩浆。其形成与早白垩世晚期太平洋板块向欧亚板块的俯冲和后缘拉张有关。

References

[1]  陈国达. 1998. 亚洲陆海壳体大地构造. 长沙: 湖南教育出版社: 1?322.
[2]  陈江峰, Foland K A, 刘义茂. 1993. 苏州复式花岗岩体的精确40Ar-39Ar定年. 岩石学报, 9(1): 77?85.
[3]  陈振宇, 王登红, 陈郑辉, 侯可军, 赵正. 2012. 赣南兴国田新白垩纪火山岩的锆石U-Pb定年及其构造背景. 岩矿测试, 31: 543?548.
[4]  邓晋福, 赵国春. 2000. 中国东部燕山期火成岩构造组合与造山?深部过程. 地质论评, 46(1): 41?48.
[5]  董传万, 彭亚鸣. 1994. 浙江青田地区火山?侵入杂岩的地球化学特征及其板块构造背景. 浙江大学学报: 自然科学版, 28(5): 540?548.
[6]  董树文, 吴锡浩, 吴珍汉, 邓晋福, 高锐, 王成善. 2000. 论东亚大陆的构造翘变. 地质论评, 46(1): 8?13.
[7]  福建省地质矿产局. 1985. 福建省区域地质志. 北京: 地质出版社: 1?671.
[8]  耿红燕, 徐夕生, O’Reilly S Y, 赵明, 孙涛. 2006. 粤西白垩纪火山?侵入岩浆活动及其地质意义. 中国科学(D辑), 36(7): 601?617.
[9]  李献华, 胡瑞忠, 饶冰. 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14?31.
[10]  李献华, 周汉文, 刘颖, 李寄?, 陈正宏, 于津生, 桂训唐. 2001. 粤西阳春中生代钾玄质侵入岩及其构造意义: II .微量元素和Sr-Nd同位素地球化学. 地球化学, 30(1): 57?65.
[11]  梁新权, 温淑女. 2009. 广东凡口铅锌矿床的走滑构造及成矿模式. 大地构造与成矿学, 33(4): 556?566.
[12]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552?558.
[13]  祝新友, 王京彬, 刘慎波, 王艳丽, 韩英, 甄世民, 郭宁宁. 2013. 广东凡口MVT铅锌矿床成矿年代――来自辉绿岩锆石SHRIMP定年证据. 地质学报, 87(2): 167?177.
[14]  Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59?79.
[15]  Atherton M P and Petford N. 1993. Generation of sodium rich magmas from newly under plated basaltic crust. Nature, 362: 144?146.
[16]  Becker H, Wenzel T and Volker F. 1999. Geochemistry of glimmerite veins in peridotites from lower Austria― implications for the origin of K-rich magmas in collision zones. Journal of Petrology, 40(2): 315?338.
[17]  Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1?2): 155?170.
[18]  Carmichael I S. 2002. The andesite aqueduct: Perspectives on the evolution of intermediate magmatism in west-central (105-99°W) Mexico. Contributions to Mineralogy and Petrology, 143(6): 641?663.
[19]  Clynne M A. 1999. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1): 105?132.
[20]  Crawford A J, Falloon T J and Green D H. 1989. Classification, petrogenesis and tectonic setting of boninites // Crawford A J. Boninites. London: Unwin Hyman: 2?49.
[21]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662?665.
[22]  Dessimoz M, Müntener O and Ulmer P. 2012. A case for hornblende dominated fractionation of arc magmas: The Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 163(4): 567?589.
[23]  Grove T L and Baker M B. 1984. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Journal of Geophysical Research: Solid Earth, 89(B5): 3253?3274.
[24]  Hastie A R, Kerr A C, Pearce J A and Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341?2357.
[25]  Hawkesworth C J, Turner S P, McDermott F, Peate D W and Van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312): 551?555.
[26]  Jahn B M, Martineu F, Peucat J and Cornichet J. 1986. Geochronology of the Tananao schist complexes, Taiwan, and its regional tectonics significance. Tectonophysics, 125: 145?160.
[27]  Jagoutz O E, Burg J P, Hussain S, Dawood H, Pettke T, Iizuka T and Maruyama S. 2009. Construction of the granitoid crust of an island arc part I: Geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contributions to Mineralogy and Petrology, 158(6): 739?755.
[28]  Kelemen P B. 1995. Genesis of high Mg-number andesites and the continental-crust. Contributions to Mineralogy and Petrology, 120: 1?19.
[29]  陈国达. 1940. 崇仁?宜黄间地质矿产. 江西省地质调查所汇刊, 第4号: 71?128.
[30]  陈国达. 1956. 中国地台“活化区”的实例并兼论“华夏古陆”问题. 地质学报, 36(3): 239?272.
[31]  陈国达. 1959a. 地壳的第三基本构造单元――地洼区.科学通报, 4(3): 94?95.
[32]  陈国达. 1977. 1∶400万中国大地构造图. 北京: 地图出版社.
[33]  陈国达. 1996. 地洼学说――活化构造及成矿理论体系概论. 长沙: 中南工业大学出版社: 1?455.
[34]  陈国达. 1959b. 地壳动“定”转化递进说――论地壳发展的一般规律. 地质学报, 39(3): 227?241.
[35]  广东省地质局761队. 1961. 广东省韶关地区1∶20万地质图说明书: 1?81.
[36]  广东省地质矿产局. 1988. 广东省区域地质志. 北京: 地质出版社: 1?941.
[37]  郭令智, 施央申, 马瑞士. 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化. 地质学报, 57(1): 11?21.
[38]  黄海玲, 郑家仪. 2001. 吴川?四会断裂带的运动学特征研究. 铀矿地质, 17(1): 34?43.
[39]  舒良树, 邓平, 王彬, 谭正中, 余心起, 孙岩. 2004. 南雄?诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约. 中国科学(D辑), 34(1): 1?13.
[40]  王一先, 赵振华. 1997. 浙江花岗岩类地球化学与地壳演化: Ⅰ. 显生宙花岗岩类. 地球化学, 26(5): 1?15.
[41]  巫建华, 徐勋胜, 刘帅. 2012. 赣南?粤北地区晚白垩世早期长英质火山岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(8): 1296?1305.
[42]  吴根耀. 2006. 白垩纪: 中国及邻区板块构造演化的一个重要变换期. 中国地质, 33(1): 64?77.
[43]  谢昕, 徐夕生, 邢光福, 邹海波. 2003. 浙东早白垩世火山岩组合的地球化学及其成因研究. 岩石学报, 19(3): 385?398.
[44]  邢光福, 汪庆华, 陶奎元. 2001. 东南沿海中生代安山玢岩的地质意义. 火山地质与矿产, 22(1): 157?162.
[45]  徐夕生, 谢昕. 2005. 中国东南部晚中生代?新生代玄武岩与壳幔作用. 高校地质学报, 11(3): 318?334.
[46]  余达淦, 叶发旺, 王勇. 2001. 江西广丰早白垩世中晚期盆地火山?侵入杂岩活动序列确认及地质意义. 大地构造与成矿学, 25(3): 271?276.
[47]  俞云文, 周泰禧, 陈江峰. 1993. 浙江玄坛地早白垩世晚期双峰式火山岩特征及其成因. 南京大学学报: 地球科学版, 5(4): 420?429.
[48]  翟丽娜, 蔡锦辉, 刘慎波. 2009. 广东凡口铅锌矿床成矿地质特征及资源预测. 华南地质与矿产, (2): 37?51.
[49]  张利民. 1991. 从信江盆地新资料论侏罗?白垩系的界线. 地质论评, 37(4): 300?318.
[50]  浙江省地质矿产局. 1988. 浙江省区域地质志. 北京: 地质出版社: 1?440.
[51]  周新民, 李武显. 2000. 中国东南部晚中生代火成岩成因: 岩石圈消减和玄武岩底侵相结合的模式. 自然科学进展, 10(3): 240?247.
[52]  周?若, 吴克隆, 严炳铨. 1994. 漳州I-A型花岗岩. 北京: 科学出版社: 8?117.
[53]  Dungan M A and Davidson J. 2004. Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes. Geology, 32(9): 773?776.
[54]  Engebretson D C, Cox A and Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Paper, 206: 1?60.
[55]  Gill J B. 1981. Orogenic Andesites and Plate Tectonic. New York: Springer-Verlag Berlin: 390.
[56]  Graham I J and Cole J W. 1991. Petrogenesis of andesites and dacites of White Island volcano, Bay of Plenty, New Zealand, in the light of new geochemical and isotopic data. New Zealand Journal of Geology and Geophysics, 34: 303?315.
[57]  Grove T L, Till C B and Krawczynski M J. 2012. The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40: 413?439.
[58]  Kawamoto T and Holloway J R. 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals. Science, 276(5310): 240?243.
[59]  Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D and Jerram D A. 2004. Flood and shield basalts from Ethiopia: Magmas from the African superswell. Journal of Petrology, 45(4): 793?834.
[60]  Lapierre H, Jahn B M, Charvet J and Yu Y W. 1997. Mesozoic felsic arc magmatism and continent al olivine tholeiites in Zhejiang Province and their relationship with tectonic activity in SE China. Tectonophysics, 274: 321?338.
[61]  Lee C T A and Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393: 266?274.
[62]  Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179?182.
[63]  Liu Y, Gao S, Hu Z, Gao C, Zong K and Wang D. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1?2): 537?571.
[64]  Ludwig K R. 2003. User''s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel.
[65]  Martin H, Bonin B, Capdevila R, Jahn B M, Lameyre J and Wang Y. 1994. The Kuiqi peralkaline granitic complex (SE China): Petrology and geochemistry. Journal of Petrology, 35(4): 983?1015.
[66]  Maruyama S and Seno T. 1986. Orogeny and relative plate motions: Example of Japanese islands. Tectonophysics, 127: 305?329.
[67]  McDonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3?4): 223?253.
[68]  Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33?47.
[69]  Rapp R P, Shimizu N and Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605?609.
[70]  Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335?356.
[71]  Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891?931.
[72]  Reubi O and Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461: 1269?1273.
[73]  Rudnick R L and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry (Volume 3), 3: 1?64.
[74]  Saunders A D, Storey M, Kent R W and Norry M J. 1992. Consequences of plume-lithosphere interactions. Geological Society, London, Special Publications, 68(1): 41?60.
[75]  Streck M J, Leeman W P and Chesley J. 2007. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35: 351?354.
[76]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313?345.
[77]  Sun S S and Nesbitt R W. 1978. Geochemical regularities and genetic significance of ophiolitic basalts. Geology, 6(11): 689?693.
[78]  Tiepolo M, Tribuzio R and Langone A. 2011. High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: Evidence from Adamello Hornblendites (Central Alps, Italy). Journal of Petrology, 52: 1011?1045.
[79]  Wang X L, Jiang S Y and Dai B Z. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204?216.
[80]  Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273?1305.
[81]  Wilson B M. 1989. Igneous petrogenesis. London: Unwin Hyman: 1?466.
[82]  Winchester J A and Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology, 20: 325?343.
[83]  Woodhead J D, Eggins S M and Johnson R W. 1998. Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. Journal of Petrology, 39(9): 1641?1668.
[84]  Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, W?erner G and Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500?504.
[85]  Yuan H L, Gao S, Liu X M, Gunther D and Wu F Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma- mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353?370.
[86]  Yuan H L, Wu F Y, Gao S, Liu X M, Xu P and Sun D Y. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411?2421.
[87]  Zhou X M and Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269?287.
[88]  Zhou X M, Sun T, Shen W Z, Shu L S and Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26?33.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133