全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原东南缘腾冲来利山A型花岗岩地球化学特征、锆石U-Pb定年及其构造意义

DOI: 10.16539/j.ddgzyckx.2015.05.017, PP. 959-965

Keywords: A型花岗岩,锆石U?Pb定年,来利山,构造意义

Full-Text   Cite this paper   Add to My Lib

Abstract:

腾冲地块处于滇西复合造山带和青藏高原东南缘,研究区发育的花岗岩携带了大量的构造信息。腾冲来利山二长花岗岩锆石U-Pb年龄为50.4±0.4Ma,是新生代早期印度?欧亚陆陆碰撞的产物。花岗岩SiO2含量较低(67.52%~68.99%),高钾(K2O=5.13%~5.70%),AR值为2.02~2.14,A/CNK值为0.95~0.99,属于准铝质高钾钙碱性系列;FeOT/MgO(4.03~4.54)、10000×Ga/Al(5.18~5.59)比值较高,相对富集LILE(Rb、Th、U、K、Pb)和HFSE(Zr、Hf),相对亏损Ba、Nb、Sr、P、Ti、Eu,而且稀土总量较高(∑REE=381.38×10?6~471.47×10?6),较富集轻稀土,稀土元素配分曲线呈右倾型。以上特征均指示来利山二长花岗岩具有A型花岗岩的特征,且属于A2亚型花岗岩。岩石的εHf(t)=?11.44~?8.01,Hf同位素二阶段模式年龄tDM2=1625~1845Ma,反应其源岩物质单一,主要由地壳增厚引起中元古代的古老大陆地壳熔融形成。在早始新世(50Ma左右),滇西腾冲-梁河地区正好处于印度?欧亚板块同碰撞?后碰撞的过渡构造环境,揭示了该地区从挤压机制向拉张机制转变的动力学过程。因此,作者推断自印度?欧亚板块陆陆碰撞高峰期至早始新世,青藏高原东南缘的板块应处于同碰撞挤压构造环境,之后进入后碰撞短暂拉张构造环境,并在滇西腾梁地区形成了来利山A型花岗岩。

References

[1]  陈吉琛, 林文信, 陈良忠. 1991. 腾冲?梁河地区含锡花岗岩序列?单元研究. 云南地质, 10(3): 241?289.
[2]  董方浏, 侯增谦, 高永丰, 曾普胜, 蒋成兴. 2006. 滇西腾冲新生代花岗岩: 成因类型与构造意义. 岩石学报, 22(4): 927?937.
[3]  耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508?1513.
[4]  侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 10.
[5]  江彪, 龚庆杰, 张静, 马楠. 2012. 滇西腾冲大松坡锡矿区晚白垩世铝质A型花岗岩的发现及其地质意义. 岩石学报, 28(5): 1477?1492.
[6]  罗君烈. 1991. 滇西锡矿的花岗岩类及其成矿作用. 矿床地质, 10(1): 81?96, 80.
[7]  莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度?亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135?148.
[8]  戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMPU-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409?3421.
[9]  施光海, 苗来成, 张福勤, 简平, 范蔚茗, 刘敦一. 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384?389.
[10]  苏玉平, 唐红峰, 侯广顺, 刘丛强. 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55?67.
[11]  杨启军, 徐义刚, 黄小龙, 罗震宇, 石玉若. 2009. 滇西腾冲?梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报, 25(5): 1092?1104.
[12]  朱弟成, 潘桂棠, 莫宣学, 段丽萍, 廖忠礼. 2004. 印度大陆和欧亚大陆的碰撞时代. 地球科学进展, 19(4): 564?571.
[13]  Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1?2): 243?258.
[14]  Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi S W, Wu Z H, Mcwilliams M O and Calvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412(6847): 628?632.
[15]  Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189?200.
[16]  DeCelles P G, Gehrels G E, Najman Y, Martin A J, Carter A and Garzanti E. 2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227(3?4): 313?330.
[17]  Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641?644.
[18]  Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y and Shee S R. 2000. The Hf isotope composition of cratonic mantle: LA-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133?147.
[19]  Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1?4): 1?13.
[20]  Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1?2): 123?138.
[21]  S?derlund U, Patchett P J, Vervoort J D and Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3?4): 311?324.
[22]  Vervoort J D and Jonathan P P. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717?3733.
[23]  Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407?419.
[24]  Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of, east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339?342.
[25]  Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370?384.
[26]  王成善, 李祥辉, 胡修棉. 2003. 再论印度?亚洲大陆碰撞的启动时间. 地质学报, 77(1): 16?24.
[27]  王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1(2): 13?21.
[28]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589?1604.
[29]  肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002. 花岗岩研究思维与方法. 北京: 地质出版社: 1?294.
[30]  徐成彦, 王豪, 刘粤湘, 孟宪国. 1991. 构造分析、遥感、物化探方法综合研究腾冲?梁河锡成矿区的控矿构造及隐伏矿床预测. 云南地质, 10(4): 394?416.
[31]  Amelin Y, Lee D C and Halliday A N. 2000. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205?4225.
[32]  Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605?626.
[33]  Batchelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1?4): 43?55.
[34]  Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J and Chen H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535?1546.
[35]  Ludwig K R. 2003. User’s Manual for Isoplot/Ex Version 2.05. Berkeley, US: Berkeley Geochronology Center: 1?272.
[36]  Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635?643.
[37]  McDonough W F and Sun S S. 1995. The composition of the earth. Chemical Geology, 120(3?4): 223?253.
[38]  Morel M L A, Nebel O, Nebel J Y J, Miller J S and Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS. Chemical Geology, 255(1?2): 231?235.
[39]  Pearce J A. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120?125.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133