全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Features and Polysomnographic Findings in Greek Male Patients with Obstructive Sleep Apnea Syndrome: Differences Regarding the Age

DOI: 10.1155/2012/324635

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background-Aim. Although sleep disturbance is a common complaint among patients of all ages, research suggests that older adults are particularly vulnerable. The aim of this retrospective study was to elucidate the influence of age on clinical characteristics and polysomnographic findings of obstructive sleep apnea syndrome (OSAS) between elderly and younger male patients in a Greek population. Methods. 697 male patients with OSAS were examined from December 2001 to August 2011. All subjects underwent an attended overnight polysomnography (PSG). They were divided into two groups: young and middle-aged (<65 years old) and elderly (≥65 years old). We evaluated the severity of OSAS, based on apnea-hypopnea index (AHI), and the duration of apnea-hypopnea events, the duration of hypoxemia during total sleep time (TST) and during REM and NREM sleep, and the oxygen saturation in REM and in NREM sleep. Results. PSG studies showed that elderly group had significant higher duration of apnea-hypopnea events, longer hypoxemia in TST and in NREM sleep, as well as lower oxygen saturation in REM and NREM sleep than the younger group. Otherwise, significant correlation between BMI and neck circumference with AHI was observed in both groups. Conclusions. The higher percentages of hypoxemia during sleep and longer duration of apnea-hypopnea events that were observed in the elderly group might be explained by increased propensity for pharyngeal collapse and increased deposition of parapharyngeal fat, which are associated with aging. Another factor that could explain these findings might be a decreased partial arterial pressure of oxygen (PaO2) due to age-related changes in the respiratory system. 1. Introduction Obstructive sleep apnea syndrome (OSAS) is a highly prevalent disorder characterized by instability of the upper airway during sleep, which results in markedly reduced (hypopnea) or absent (apnea) airflow at the nose/mouth [1]. Episodes are typically accompanied by oxyhemoglobin desaturation and terminated by brief microarousals that result in sleep fragmentation [2]. Patients usually present with loud habitual snoring, witnessed apnea, and excessive daytime sleepiness [1]. Several physical and psychological changes are known to occur with normal aging. It is well known that there are differences of OSAS regarding the elderly [3]. Aging is associated with several well-described changes in patterns of sleep. Although sleep disturbance is a common complaint among patients of all ages, research suggests that older adults are particularly vulnerable [3]. Studies about

References

[1]  F. Hora, L. M. Nápolis, C. Daltro et al., “Clinical, anthropometric and upper airway anatomic characteristics of obese patients with obstructive sleep apnea syndrome,” Respiration, vol. 74, no. 5, pp. 517–524, 2007.
[2]  American Academy of Sleep Medicine Task Force, “Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research,” Sleep, vol. 22, no. 5, pp. 667–689, 1999.
[3]  S. Ancoli-Israel, D. F. Kripke, M. R. Klauber, W. J. Mason, R. Fell, and O. Kaplan, “Sleep-disordered breathing in community-dwelling elderly,” Sleep, vol. 14, no. 6, pp. 486–495, 1991.
[4]  E. O. Bixler, A. N. Vgontzas, T. Ten Have, K. Tyson, and A. Kales, “Effects of age on sleep apnea in men. I. Prevalence and severity,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 144–148, 1998.
[5]  R. P?ywaczewski, M. Bednarek, L. Jonczak, and J. Zieliński, “Sleep-disordered breathing in a middle-aged and older Polish urban population,” Journal of Sleep Research, vol. 17, no. 1, pp. 73–81, 2008.
[6]  Y. Endeshaw, “Clinical characteristics of obstructive sleep apnea in community-dwelling older adults,” Journal of the American Geriatrics Society, vol. 54, no. 11, pp. 1740–1744, 2006.
[7]  M. W. Johns, “A new method for measuring daytime sleepiness: the Epworth sleepiness scale,” Sleep, vol. 14, no. 6, pp. 540–545, 1991.
[8]  C. Iber, S. Ancoli-Israel, A. L. Chesson, and S. F. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications, American Academy of Sleep Medicine, Westchester, NY, USA, 2007.
[9]  W. R. Ruehland, P. D. Rochford, F. J. O'Donoghue, R. J. Pierce, P. Singh, and A. T. Thornton, “The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index,” Sleep, vol. 32, no. 2, pp. 150–157, 2009.
[10]  Y. Li, V. Chongsuvivatwong, A. Geater, and A. Liu, “Are biomarker levels a good follow-up tool for evaluating obstructive sleep apnea syndrome treatments?” Respiration, vol. 76, no. 3, pp. 317–323, 2008.
[11]  D. I. Bliwise, Normal Aging, Elsevier Saunders, Philadelphia, Pa, USA, 4th edition, 2005.
[12]  S. Chung, I. Y. Yoon, C. H. Lee, and J. W. Kim, “The association of nocturnal hypoxemia with arterial stiffness and endothelial dysfunction in male patients with obstructive sleep apnea syndrome,” Respiration, vol. 79, no. 5, pp. 363–369, 2010.
[13]  A. Malhotra, Y. Huang, R. Fogel et al., “Aging influences on pharyngeal anatomy and physiology: the predisposition to pharyngeal collapse,” American Journal of Medicine, vol. 119, no. 1, pp. 72.e9–72.e14, 2006.
[14]  R. J. Schwab, M. Pasirstein, R. Pierson et al., “Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 5, pp. 522–530, 2003.
[15]  R. J. Erskine, P. J. Murphy, J. A. Langton, and G. Smith, “Effect of age on the sensitivity of upper airway reflexes,” British Journal of Anaesthesia, vol. 70, no. 5, pp. 574–575, 1993.
[16]  A. S. Hersi, “Obstructive sleep apnea and cardiac arrhythmias,” Annals of Thoracic Medicine, vol. 5, no. 1, pp. 10–17, 2010.
[17]  V. K. Somers, D. P. White, R. Amin et al., “Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health),” Circulation, vol. 118, no. 10, pp. 1080–1111, 2008.
[18]  M. M. Ohayon, M. A. Carskadon, C. Guilleminault, and M. V. Vitiello, “Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan,” Sleep, vol. 27, no. 7, pp. 1255–1273, 2004.
[19]  P. N. Prinz, M. V. Vitiello, M. A. Raskind, and M. J. Thorpy, “Geriatrics: sleep disorders and aging,” The New England Journal of Medicine, vol. 323, no. 8, pp. 520–526, 1990.
[20]  J. C. Ware, R. H. McBrayer, and J. A. Scott, “Influence of sex and age on duration and frequency of sleep apnea events,” Sleep, vol. 23, no. 2, pp. 165–170, 2000.
[21]  M. Eikermann, A. S. Jordan, N. L. Chamberlin et al., “The influence of aging on pharyngeal collapsibility during sleep,” Chest, vol. 131, no. 6, pp. 1702–1709, 2007.
[22]  J. J. Klawe, M. Tafil-Klawe, W. Sikorski, W. Szajnoch, and K. Jeske, “Age-related circadian variations of cardiac and respiratory components of the carotid baroreflex in humans,” Journal of Physiology and Pharmacology, vol. 55, supplement 3, pp. 83–88, 2004.
[23]  S. Pariel-Madjlessi, C. Oasi, D. Letonturier, A. Bruhat, and J. Belmin, “Brain consequences of hypoxemia in the elderly,” Revue de Geriatrie, vol. 26, no. 5, pp. 371–378, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133