全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

面向短QT综合征的电生理建模与仿真研究进展

DOI: 10.3969/j.issn.0372-2112.2015.01.019, PP. 120-128

Keywords: 虚拟心脏,计算心脏学,建模与仿真,短QT综合征,基因突变

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,多物理尺度建模仿真心电动力学研究已经取得了显著进展.本文介绍当前心脏建模仿真领域中心肌细胞钾离子通道基因突变引起短QT综合征的研究情况.首先从DenisNoble多物理尺度划分的角度介绍了亚细胞与细胞级模型、心肌纤维与组织级模型、心脏器官级模型以及仿真心电图等数学模型,并从量化的角度来分析短QT综合征基因变异在细胞、组织、器官等多层面上对心电功能的影响;然后重点列出了三种短QT综合征亚型近期的研究成果;最后进一步探讨了面向短QT综合征的电生理建模与仿真的研究方向和应用前景.

References

[1]  Michael H G,et al.The short QT syndrome proposed diagnostic criteria[J].Journal of the American College of Cardiology,2011,57(7):802-812.
[2]  Schimpf R,et al.Clinical and molecular genetics of the short QT syndrome[J].Current Opinion Cardiology,2008,23(3):192-198.
[3]  Harchi A,et al.Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome[J].Journal of Molecular and Cellular Cardiology,2009,47(5):743-747.
[4]  Gussak I,Brugada P,Brugada J,et al.Idiopathic short QT interval:a new clinical syndrome?[J].Cardiology,2000,94(2):99-102.
[5]  Adeniran I,et al.Proarrhythmia in KCNJ2-linked short QT syndrome:insights from modelling[J].Cardiovascular Research,2012,94(1):66-76.
[6]  Zhang H,et al.Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation-A simulation study[J].Progress in Biophysics and Molecular Biology,2008,96(1-3):112-131.
[7]  Daniel L,et al.Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall[J].EP Europace,2005,7(s2):S105-S117.
[8]  K H W J ten Tusscher,et al.Organization of ventricular fibrillation in the human heart:experiments and models[J].Experimental Physiology,2009,94(5):553-562.
[9]  Wilders R.Computer modelling of the sinoatrial node[J].Medical & Biological Engineering & Computing,2007,45(2):189-207.
[10]  Natalie J,et al.Molecular architecture of the human sinus node-Insights into the function of the cardiac pacemaker[J].Circulation,2009,119:1562-1575.
[11]  Hilemann D,et al.Excitation-contraction coupling and extracellular calcium transients in rabbit atrium:reconstruction of basic cellular mechanisms[J].Proceedings of the Royal Society B,1987,230(1259):163-205.
[12]  Nygren A,et al.Mathematical model of an adult human atrial cell:the role of K+currents in repolarization[J].Circulation Research,1998,82:63-81.
[13]  Marc C,et al.Ionic mechanisms underlying human atrial action potential properties:insights from a mathematical model[J].American of Physiology Heart and Circulatory Physiology,1998,275:301-321.
[14]  Nygren A,et al.Simulations of the human atrial action potential[J].Philosophical Transactions of the Royal Society of London A,2001,359(1783):1111-1125.
[15]  Kneller J,et al.Remodeling of Ca2+-hangling by atrial tachycardia:evidence for a role in loss of rate-adaptation[J].Cardiovasclar Research,2002,54(2):416-426.
[16]  Michailova A,et al.Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum[J].Biophysical Journal,2002,83(6):3134-3151.
[17]  Beeler G,et al.Reconstruction of the action potential of ventricular myocardial fibres[J].The Journal of Physiology,1977,268:177-210.
[18]  Luo C H,Rudy Y.A model of the ventricular cardiac action potential.Depolarization,repolarization,and their interaction[J].Circulation Research,1991,68:1501-1526.
[19]  Luo C H,Rudy Y.A dynamic-model of the cardiac ventricular action-potential:Simulation of ionic currents and concentration changes[J].Circulation Research,1994,74:1071-1096.
[20]  Leo P,et al.Simulation study of cellular electrical properties in heart failure[J].Circulation Research,1998,82:1206-1223.
[21]  Vivek I,et al.A computational model of the human left-ventricular epicardial myocyte[J].Biophysical Journal,2004,87(3):1507-1525.
[22]  Li J,et al.Computer three-dimensional reconstruction of the atrioventricular node[J].Circulation Research,2008,102:975-985.
[23]  Katritsis G,et al.The atrioventricular nodal reentrant tachycardia circuit:a proposal[J].Heart Rhythm,2007,4(10):1354-1360.
[24]  Zhu X,et al.Mathematical model of canine atrial cell[A].Proceeding of CBME 2007[C].Xi’an China:CBME,2007.20-27.
[25]  Gima K,et al.Ionic current basis of electrocardiographic waveform:a model study[J].Circulation Research,2002,90:889-896.
[26]  Rodriguez B,et al.Modeling cardiac ischemia[J].Annals of the New York Academy of Science,2006,1080:395-414.
[27]  Sanjiv M,et al.Action potential dynamics explain arrhythmic vulnerability in human heart failure[J].Journal of the American College of Cardiology,2008,52(22):1782-1792.
[28]  Tran X,et al.Vulnerability to re-entry in simulated two-dimensional cardiac tissue:effects of electrical restitution and stimulation sequence[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2007,17(4):043115/1-11.
[29]  Noble D.Modeling the heart—from genes to cells to the whole organ[J].Science,2002,295(5560):1678-1682.
[30]  Hunter P,et al.Integration from proteins to organs:the IUPS physiome project[J].Mechanisms of Ageing and Development,2005,126(1):187-192.
[31]  Keldermann R,et al.A computational study of mother rotor VF in the human ventricles[J].American Journal of Physiology Heart Circulation Physiolatory Physiology,2009,296:370-379.
[32]  Xia L,et al.Analysis of cardiac ventricular wall motion based on a three dimensional electromechanical biventricular model[J].Physics in Medicine and Biology,2005,50(8):1901-1917.
[33]  K H W J ten Tusscher,et al.Comparison of electrophysiological models for human ventricular cells and tissues[J].Progress in Biophysics and Molecular Biology,2006,90(1-3):326-345.
[34]  Brugada R,et al.Sudden death associated with short-QT syndrome linked to mutations in HERG[J].Circulation,2004,109:30-35.
[35]  Bellocq C,et al.Mutation in the KCNQ1 gene leading to the short QT-interval syndrome[J].Circulation,2004,109:2394-2397.
[36]  Hong K,et al.De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero[J].Cardiovasc Research,2005,68(3):433-440.
[37]  Silvia G,et al.A novel form of short QT syndrome(SQT3)is caused by a mutation in the KCNJ2 gene[J].Circulation Research,2005,96:800-807.
[38]  Sanjay K,et al.Atrial proarrhythmia due to increased inward rectifier current(IK1)arising from KCNJ2 mutation-A simulation study[J].Progress in Biophysics and Molecular Biology,2008,98(2-3):186-197.
[39]  Courtemanche M,et al.Ionic mechanisms underlying human atrial action potentials:insights from a mathematical model[J].American Journal of Physiology Heart and Circulatory Physiology,1998,275:301-321.
[40]  Tetsuhisa H,et al.A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents[J].Cardiovascular Research,2012,93(4):666-673.
[41]  杨际祥,谭国真,王荣生.并行与分布式计算动态负载均衡策略综述[J].电子学报,2010,38(5):1122-1130. Yang Jixiang,Tan Guozhen,Wang Rongsheng.A survey of dynamic load balancing strategies for parallel and distributed computing[J].Acta Electronica Sinica,2010,38(5):1122-1129.(in Chinese)
[42]  杨金柱,赵大哲,栗伟,耿欢,王艳飞.基于GPU的体绘制算法研究[J].电子学报,2010,38(2A):202-206. Yang Jinzhu,zhao Dazhe,Li Wei,Geng Huan,Wang Yanfei.The research volume rendering algorithm based on GPU[J].Acta Electronica Sinica,2010,38(2A):202-206.(in Chinese)
[43]  袁友伟.采用GPU加速的三维实体模型绘制[J].电子学报,2008,36(12A):144-146. Yuan Youwei.3D solidmodels rendering based on GPU acceleration[J].Acta Electronica Sinica,2008,36(12A):144-146.(in Chinese)
[44]  Adeniran I,et al.Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome[J].PloS Computational Biology,2011,7(12):1-16.
[45]  Zhang H,et al.In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current[J].Biochemical Biophysical Research Communications,2004,322(2):693-699.
[46]  Wang K,et al.The E1784K mutation in SCN5A and phenotypic overlap of Type 3 long QT syndrome and Brugada syndrome:A simulation study[A].Proceedings of the 36th Computers in Cardiology[C].USA:IEEE,2009,36:301-304.
[47]  Wang K,et al.Simulation ECG waveforms in long QT syndrome based on a model of human ventricular tissue[A].Proceedings of the 33rd Computers in Cardiology[C].USA:IEEE,2006,33:673-676.
[48]  Wang K,Luo C,et al.Simulation of KCNJ2-linked short QT syndrome in human ventricular tissue[A].Proceedings of the 40th Computing in Cardiology[C].USA:IEEE,2013,40:349-352.
[49]  Hodgkin A L,et al.A qantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952,117(4):500-544.
[50]  Noble D.Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations[J].Nature,1960,188:495-497.
[51]  Hunter P,et al.Bioinformatics,multiscale modeling and the IUPS physiome project[J].Briefings in Bioinformatics,2008,9(4):333-343.
[52]  Garny A,et al.Dimensionality in cardiac modeling[J].Progress in Biophysics and Molecular Biology,2005,87(1):47-66.
[53]  K H W J ten Tusscher,et al.A model for human ventricular tissue[J].American Journal of Physiology Heart Circulation Physiology,2004,286:1573-1589.
[54]  Xia L,Stuart Crozier,et al.Simulation of brugada syndrome using cellular and three-dimensional whole-heart modeling approaches[J].Physiological Measurement,2006,27(11):1125-1142.
[55]  Daniel L,et al.Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations[J].Biomedizinische Technik / Biomedical Engineering,2009,54(3):107-125.
[56]  Wussling M,et al.Simulation by two calcium store models of myocardial dynamic properties:potentiation,staircase,and biphasic tension development[J].Gen Physiol Biophys,1986,5(2):135-152.
[57]  Christian S,et al.Three-dimensional high resolution imaging of cardiac proteins to construct models of intracellular Ca2+ signalling in rat ventricular myocytes[J].Experimental Physiology,2009,94(5):496-508.
[58]  Mahajan A,et al.A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates[J].Biophysical Journal,2008,94(2):392-410.
[59]  K H W J ten Tusscher,et al.Alternans and spiral breakup in a human ventricular tissue model[J].American Journal Physiology Heart Circulation Physiology,2006,291(3):1088-1100.
[60]  Noble D.A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pace-maker potentials[J].The Journal of Physiology,1962,160:317-352.
[61]  DiFrancesco D,et al.A model of cardiac electrical activity incorporating ionic pumps and concentration changes[J].Philosophical Transactions of the Royal Society of London B,1985,307(1133):353-398.
[62]  Stewart P,et al.Mathematical models of the electrical action potential of Purkinje fibre cells[J].Philosophical Transactions of the Royal Society A,2009,367(1896):2225-2255.
[63]  Yanagihara K,et al.Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments[J].Japanese Journal of Physiology,1980,30(6):841-857.
[64]  Wilders R,et al.Pacemaker activity of the rabbit sinoatrial node.A comparison of mathematical models[J].Biophysical Journal,1991,60(5):1202-1216.
[65]  Demir S,et al.A mathematical model of a rabbit sinoatrial node cell[J].American Journal of Physiology-Cell Physiology,1994,266:832-852.
[66]  Zhang H,et al.Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node[J].American Journal Physiology of Physiology-Heart Circulatory Physiology,2000,279:397-421.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133